Skip to content

Commit

Permalink
Implement proper truncation for prior distributions
Browse files Browse the repository at this point in the history
Currently, when sampled startpoints are outside the bounds, their value is set to the upper/lower bounds. This may put too much probability mass on the bounds.

With these changes, we properly sample from the respective truncated distributions.

Closes PEtab-dev#330.
  • Loading branch information
dweindl committed Dec 11, 2024
1 parent 8456635 commit f4b5153
Show file tree
Hide file tree
Showing 4 changed files with 247 additions and 72 deletions.
28 changes: 19 additions & 9 deletions doc/example/distributions.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,10 @@
},
{
"metadata": {
"collapsed": true
"collapsed": true,
"jupyter": {
"is_executing": true
}
},
"cell_type": "code",
"source": [
Expand All @@ -42,7 +45,7 @@
" if ax is None:\n",
" fig, ax = plt.subplots()\n",
"\n",
" sample = prior.sample(10000)\n",
" sample = prior.sample(20_000)\n",
"\n",
" # pdf\n",
" xmin = min(sample.min(), prior.lb_scaled if prior.bounds is not None else sample.min())\n",
Expand Down Expand Up @@ -138,11 +141,13 @@
"metadata": {},
"cell_type": "code",
"source": [
"# different, because transformation!=LIN\n",
"plot(Prior(UNIFORM, (0.01, 2), transformation=LOG10))\n",
"plot(Prior(PARAMETER_SCALE_UNIFORM, (0.01, 2), transformation=LOG10))\n",
"\n",
"# same, because transformation=LIN\n",
"plot(Prior(UNIFORM, (0.01, 2), transformation=LIN))\n",
"plot(Prior(PARAMETER_SCALE_UNIFORM, (0.01, 2), transformation=LIN))\n"
"plot(Prior(PARAMETER_SCALE_UNIFORM, (0.01, 2), transformation=LIN))"
],
"id": "5ca940bc24312fc6",
"outputs": [],
Expand All @@ -151,15 +156,18 @@
{
"metadata": {},
"cell_type": "markdown",
"source": "To prevent the sampled parameters from exceeding the bounds, the sampled parameters are clipped to the bounds. The bounds are defined in the parameter table. Note that the current implementation does not support sampling from a truncated distribution. Instead, the samples are clipped to the bounds. This may introduce unwanted bias, and thus, should only be used with caution (i.e., the bounds should be chosen wide enough):",
"source": "The given distributions are truncated at the bounds defined in the parameter table:",
"id": "b1a8b17d765db826"
},
{
"metadata": {},
"cell_type": "code",
"source": [
"plot(Prior(NORMAL, (0, 1), bounds=(-4, 4))) # negligible clipping-bias at 4 sigma\n",
"plot(Prior(UNIFORM, (0, 1), bounds=(0.1, 0.9))) # significant clipping-bias"
"plot(Prior(NORMAL, (0, 1), bounds=(-2, 2)))\n",
"plot(Prior(UNIFORM, (0, 1), bounds=(0.1, 0.9)))\n",
"plot(Prior(UNIFORM, (1e-8, 1), bounds=(0.1, 0.9), transformation=LOG10))\n",
"plot(Prior(LAPLACE, (0, 1), bounds=(-0.5, 0.5)))\n",
"plot(Prior(PARAMETER_SCALE_UNIFORM, (-3, 1), bounds=(1e-2, 1), transformation=LOG10))\n"
],
"id": "4ac42b1eed759bdd",
"outputs": [],
Expand All @@ -175,9 +183,11 @@
"metadata": {},
"cell_type": "code",
"source": [
"plot(Prior(NORMAL, (10, 1), bounds=(6, 14), transformation=\"log10\"))\n",
"plot(Prior(PARAMETER_SCALE_NORMAL, (10, 1), bounds=(10**6, 10**14), transformation=\"log10\"))\n",
"plot(Prior(LAPLACE, (10, 2), bounds=(6, 14)))"
"plot(Prior(NORMAL, (10, 1), bounds=(6, 11), transformation=\"log10\"))\n",
"plot(Prior(PARAMETER_SCALE_NORMAL, (10, 1), bounds=(10**9, 10**14), transformation=\"log10\"))\n",
"plot(Prior(LAPLACE, (10, 2), bounds=(6, 14)))\n",
"plot(Prior(LOG_LAPLACE, (1, 0.5), bounds=(0.5, 8)))\n",
"plot(Prior(LOG_NORMAL, (2, 1), bounds=(0.5, 8)))"
],
"id": "581e1ac431860419",
"outputs": [],
Expand Down
181 changes: 157 additions & 24 deletions petab/v1/distributions.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,15 +28,65 @@ class Distribution(abc.ABC):
If a float, the distribution is transformed to its corresponding
log distribution with the given base (e.g., Normal -> Log10Normal).
If ``False``, no transformation is applied.
:param trunc: The truncation points (lower, upper) of the distribution
or ``None`` if the distribution is not truncated.
"""

def __init__(self, log: bool | float = False):
def __init__(
self, *, log: bool | float = False, trunc: tuple[float, float] = None
):
if log is True:
log = np.exp(1)

if trunc == (-np.inf, np.inf):
trunc = None

if trunc is not None and trunc[0] > trunc[1]:
raise ValueError(
"The lower truncation limit must be smaller "
"than the upper truncation limit."
)

self._logbase = log
self._trunc = trunc

self._cd_low = None
self._cd_high = None
self._truncation_normalizer = 1

if self._trunc is not None:
try:
# the cumulative density of the transformed distribution at the
# truncation limits
self._cd_low = self._cdf_transformed_untruncated(
self.trunc_low
)
self._cd_high = self._cdf_transformed_untruncated(
self.trunc_high
)
# normalization factor for the PDF of the transformed
# distribution to account for truncation
self._truncation_normalizer = 1 / (
self._cd_high - self._cd_low
)
except NotImplementedError:
pass

@property
def trunc_low(self) -> float:
"""The lower truncation limit of the transformed distribution."""
return self._trunc[0] if self._trunc else -np.inf

@property
def trunc_high(self) -> float:
"""The upper truncation limit of the transformed distribution."""
return self._trunc[1] if self._trunc else np.inf

def _undo_log(self, x: np.ndarray | float) -> np.ndarray | float:
"""Undo the log transformation.
def _exp(self, x: np.ndarray | float) -> np.ndarray | float:
"""Exponentiate / undo the log transformation according.
Exponentiate if a log transformation is applied to the distribution.
Otherwise, return the input.
:param x: The sample to transform.
:return: The transformed sample
Expand All @@ -45,9 +95,12 @@ def _undo_log(self, x: np.ndarray | float) -> np.ndarray | float:
return x
return self._logbase**x

def _apply_log(self, x: np.ndarray | float) -> np.ndarray | float:
def _log(self, x: np.ndarray | float) -> np.ndarray | float:
"""Apply the log transformation.
Compute the log of x with the specified base if a log transformation
is applied to the distribution. Otherwise, return the input.
:param x: The value to transform.
:return: The transformed value.
"""
Expand All @@ -61,12 +114,17 @@ def sample(self, shape=None) -> np.ndarray:
:param shape: The shape of the sample.
:return: A sample from the distribution.
"""
sample = self._sample(shape)
return self._undo_log(sample)
sample = (
self._exp(self._sample(shape))
if self._trunc is None
else self._inverse_transform_sample(shape)
)

return sample

@abc.abstractmethod
def _sample(self, shape=None) -> np.ndarray:
"""Sample from the underlying distribution.
"""Sample from the underlying distribution, accounting for truncation.
:param shape: The shape of the sample.
:return: A sample from the underlying distribution,
Expand All @@ -85,7 +143,11 @@ def pdf(self, x):
chain_rule_factor = (
(1 / (x * np.log(self._logbase))) if self._logbase else 1
)
return self._pdf(self._apply_log(x)) * chain_rule_factor
return (
self._pdf(self._log(x))
* chain_rule_factor
* self._truncation_normalizer
)

@abc.abstractmethod
def _pdf(self, x):
Expand All @@ -104,13 +166,71 @@ def logbase(self) -> bool | float:
"""
return self._logbase

def cdf(self, x):
"""Cumulative distribution function at x.
:param x: The value at which to evaluate the CDF.
:return: The value of the CDF at ``x``.
"""
return self._cdf_transformed_untruncated(x) - self._cd_low

def _cdf_transformed_untruncated(self, x):
"""Cumulative distribution function of the transformed, but untruncated
distribution at x.
:param x: The value at which to evaluate the CDF.
:return: The value of the CDF at ``x``.
"""
return self._cdf_untransformed_untruncated(self._log(x))

def _cdf_untransformed_untruncated(self, x):
"""Cumulative distribution function of the underlying
(untransformed, untruncated) distribution at x.
:param x: The value at which to evaluate the CDF.
:return: The value of the CDF at ``x``.
"""
raise NotImplementedError

def _ppf_untransformed_untruncated(self, q):
"""Percent point function of the underlying
(untransformed, untruncated) distribution at q.
:param q: The quantile at which to evaluate the PPF.
:return: The value of the PPF at ``q``.
"""
raise NotImplementedError

def _ppf_transformed_untruncated(self, q):
"""Percent point function of the transformed, but untruncated
distribution at q.
:param q: The quantile at which to evaluate the PPF.
:return: The value of the PPF at ``q``.
"""
return self._exp(self._ppf_untransformed_untruncated(q))

def _inverse_transform_sample(self, shape):
"""Generate an inverse transform sample from the transformed and
truncated distribution.
:param shape: The shape of the sample.
:return: The sample.
"""
uniform_sample = np.random.uniform(
low=self._cd_low, high=self._cd_high, size=shape
)
return self._ppf_transformed_untruncated(uniform_sample)


class Normal(Distribution):
"""A (log-)normal distribution.
:param loc: The location parameter of the distribution.
:param scale: The scale parameter of the distribution.
:param truncation: The truncation limits of the distribution.
:param trunc: The truncation limits of the distribution.
``None`` if the distribution is not truncated. The truncation limits
are the truncation limits of the transformed distribution.
:param log: If ``True``, the distribution is transformed to a log-normal
distribution. If a float, the distribution is transformed to a
log-normal distribution with the given base.
Expand All @@ -124,19 +244,15 @@ def __init__(
self,
loc: float,
scale: float,
truncation: tuple[float, float] | None = None,
trunc: tuple[float, float] | None = None,
log: bool | float = False,
):
super().__init__(log=log)
self._loc = loc
self._scale = scale
self._truncation = truncation

if truncation is not None:
raise NotImplementedError("Truncation is not yet implemented.")
super().__init__(log=log, trunc=trunc)

def __repr__(self):
trunc = f", truncation={self._truncation}" if self._truncation else ""
trunc = f", trunc={self._trunc}" if self._trunc else ""
log = f", log={self._logbase}" if self._logbase else ""
return f"Normal(loc={self._loc}, scale={self._scale}{trunc}{log})"

Expand All @@ -146,6 +262,12 @@ def _sample(self, shape=None):
def _pdf(self, x):
return norm.pdf(x, loc=self._loc, scale=self._scale)

def _cdf_untransformed_untruncated(self, x):
return norm.cdf(x, loc=self._loc, scale=self._scale)

def _ppf_untransformed_untruncated(self, q):
return norm.ppf(q, loc=self._loc, scale=self._scale)

@property
def loc(self):
"""The location parameter of the underlying distribution."""
Expand Down Expand Up @@ -177,9 +299,9 @@ def __init__(
*,
log: bool | float = False,
):
super().__init__(log=log)
self._low = low
self._high = high
super().__init__(log=log)

def __repr__(self):
log = f", log={self._logbase}" if self._logbase else ""
Expand All @@ -191,13 +313,21 @@ def _sample(self, shape=None):
def _pdf(self, x):
return uniform.pdf(x, loc=self._low, scale=self._high - self._low)

def _cdf_untransformed_untruncated(self, x):
return uniform.cdf(x, loc=self._low, scale=self._high - self._low)

def _ppf_untransformed_untruncated(self, q):
return uniform.ppf(q, loc=self._low, scale=self._high - self._low)


class Laplace(Distribution):
"""A (log-)Laplace distribution.
:param loc: The location parameter of the distribution.
:param scale: The scale parameter of the distribution.
:param truncation: The truncation limits of the distribution.
:param trunc: The truncation limits of the distribution.
``None`` if the distribution is not truncated. The truncation limits
are the truncation limits of the transformed distribution.
:param log: If ``True``, the distribution is transformed to a log-Laplace
distribution. If a float, the distribution is transformed to a
log-Laplace distribution with the given base.
Expand All @@ -211,18 +341,15 @@ def __init__(
self,
loc: float,
scale: float,
truncation: tuple[float, float] | None = None,
trunc: tuple[float, float] | None = None,
log: bool | float = False,
):
super().__init__(log=log)
self._loc = loc
self._scale = scale
self._truncation = truncation
if truncation is not None:
raise NotImplementedError("Truncation is not yet implemented.")
super().__init__(log=log, trunc=trunc)

def __repr__(self):
trunc = f", truncation={self._truncation}" if self._truncation else ""
trunc = f", trunc={self._trunc}" if self._trunc else ""
log = f", log={self._logbase}" if self._logbase else ""
return f"Laplace(loc={self._loc}, scale={self._scale}{trunc}{log})"

Expand All @@ -232,6 +359,12 @@ def _sample(self, shape=None):
def _pdf(self, x):
return laplace.pdf(x, loc=self._loc, scale=self._scale)

def _cdf_untransformed_untruncated(self, x):
return laplace.cdf(x, loc=self._loc, scale=self._scale)

def _ppf_untransformed_untruncated(self, q):
return laplace.ppf(q, loc=self._loc, scale=self._scale)

@property
def loc(self):
"""The location parameter of the underlying distribution."""
Expand Down
Loading

0 comments on commit f4b5153

Please sign in to comment.