Skip to content

elephantscale/ML-learning-path

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

75 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A Learning Path for Machine Learning (ML)

A guided self learning path for Machine Learning

Website

License

Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright and Ownership

This guide is created by and copyrighted to Sujee Maniyam (2020)

The articles and videos referenced in this guide are owned, copyrighted by their respective owners.


Learning Path

Intro

Books

Provided as a reference. We will reference specific chapters throughout the guide.

Meta Links

Useful links for ML.

Data

  • Get data to practice ML

Part 1 - Prerequisites for ML

Python Basics

Python Data Analysis

Part 2 - Essential Machine Learning

Feature Engineering

Intro to Machine Learning

Algorithms Overview

SciKit-Learn Library

Supervised Algorithms

Regression

Linear Regression

Classification

Logistic Regression

Support Vector Machines (SVM)

Naive Bayes (NB)

Model Validation

Tree Algorithms

Trees can do both regression and classification tasks

Unsupervised Algorithms

Clustering

Dimension Reduction

About

Self learning guide for machine learning

Resources

License

Unknown, Unknown licenses found

Licenses found

Unknown
LICENSE
Unknown
LICENSE.md

Stars

Watchers

Forks

Languages