Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add CountVectorizer #315

Merged
merged 5 commits into from
Jan 17, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
106 changes: 106 additions & 0 deletions lib/scholar/feature_extraction/count_vectorizer.ex
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
defmodule Scholar.FeatureExtraction.CountVectorizer do
@moduledoc """
A `CountVectorizer` converts already indexed collection of text documents to a matrix of token counts.
"""
import Nx.Defn

opts_schema = [
max_token_id: [
type: :pos_integer,
required: true,
doc: ~S"""
Maximum token id in the input tensor.
"""
]
]

@opts_schema NimbleOptions.new!(opts_schema)

@doc """
Generates a count matrix where each row corresponds to a document in the input corpus,
and each column corresponds to a unique token in the vocabulary of the corpus.

The input must be a 2D tensor where:

* Each row represents a document.
* Each document has integer values representing tokens.

The same number represents the same token in the vocabulary. Tokens should start from 0
and be consecutive. Negative values are ignored, making them suitable for padding.

## Options

#{NimbleOptions.docs(@opts_schema)}

## Examples

iex> t = Nx.tensor([[0, 1, 2], [1, 3, 4]])
iex> Scholar.FeatureExtraction.CountVectorizer.fit_transform(t, max_token_id: Scholar.FeatureExtraction.CountVectorizer.max_token_id(t))
Nx.tensor([
[1, 1, 1, 0, 0],
[0, 1, 0, 1, 1]
])

With padding:

iex> t = Nx.tensor([[0, 1, -1], [1, 3, 4]])
iex> Scholar.FeatureExtraction.CountVectorizer.fit_transform(t, max_token_id: Scholar.FeatureExtraction.CountVectorizer.max_token_id(t))
Nx.tensor([
[1, 1, 0, 0, 0],
[0, 1, 0, 1, 1]
])
"""
deftransform fit_transform(tensor, opts \\ []) do
fit_transform_n(tensor, NimbleOptions.validate!(opts, @opts_schema))
end

@doc """
Computes the max_token_id option from given tensor.

This function cannot be called inside `defn` (and it will raise
if you try to do so).

## Examples

iex> t = Nx.tensor([[1, -1, 2], [2, 0, 0], [0, 1, -1]])
iex> Scholar.FeatureExtraction.CountVectorizer.max_token_id(t)
2
"""
def max_token_id(tensor) do
tensor |> Nx.reduce_max() |> Nx.to_number()
end

defnp fit_transform_n(tensor, opts) do
check_for_rank(tensor)
counts = Nx.broadcast(0, {Nx.axis_size(tensor, 0), opts[:max_token_id] + 1})

{_, counts} =
while {{i = 0, tensor}, counts}, Nx.less(i, Nx.axis_size(tensor, 0)) do
{_, counts} =
while {{j = 0, i, tensor}, counts}, Nx.less(j, Nx.axis_size(tensor, 1)) do
index = tensor[i][j]

counts =
if Nx.any(Nx.less(index, 0)),
do: counts,
else: Nx.indexed_add(counts, Nx.stack([i, index]), 1)

{{j + 1, i, tensor}, counts}
end

{{i + 1, tensor}, counts}
end

counts
end

defnp check_for_rank(tensor) do
if Nx.rank(tensor) != 2 do
raise ArgumentError,
"""
expected tensor to have shape {num_documents, num_tokens}, \
got tensor with shape: #{inspect(Nx.shape(tensor))}\
"""
end
end
end
53 changes: 53 additions & 0 deletions test/scholar/feature_extraction/count_vectorizer.ex
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
defmodule Scholar.Preprocessing.CountVectorizer do
use Scholar.Case, async: true
alias Scholar.FeatureExtraction.CountVectorizer
doctest CountVectorizer

describe "fit_transform" do
test "fit_transform test" do
tesnsor = Nx.tensor([[2, 3, 0], [1, 4, 4]])

counts =
CountVectorizer.fit_transform(tesnsor,
max_token_id: CountVectorizer.max_token_id(tesnsor)
)

expected_counts = Nx.tensor([[1, 0, 1, 1, 0], [0, 1, 0, 0, 2]])

assert counts == expected_counts
end

test "fit_transform test - tensor with padding" do
tensor = Nx.tensor([[2, 3, 0], [1, 4, -1]])

counts =
CountVectorizer.fit_transform(tensor, max_token_id: CountVectorizer.max_token_id(tensor))

expected_counts = Nx.tensor([[1, 0, 1, 1, 0], [0, 1, 0, 0, 1]])

assert counts == expected_counts
end
end

describe "max_token_id" do
test "max_token_id test" do
tensor = Nx.tensor([[2, 3, 0], [1, 4, 4]])
assert CountVectorizer.max_token_id(tensor) == 4
end

test "max_token_id tes - tensor with padding" do
tensor = Nx.tensor([[2, 3, 0], [1, 4, -1]])
assert CountVectorizer.max_token_id(tensor) == 4
end
end

describe "errors" do
test "wrong input rank" do
assert_raise ArgumentError,
"expected tensor to have shape {num_documents, num_tokens}, got tensor with shape: {3}",
fn ->
CountVectorizer.fit_transform(Nx.tensor([1, 2, 3]), max_token_id: 3)
end
end
end
end
Loading