Fast conversation with emotional AI with even-realities G1 smart glass connection
This project implements a real-time ai conversation system with emotional text-to-speech (TTS) capabilities. It uses a large language model (LLM) for generating responses and a TTS engine with voice-cloning for voice output.
Based on:
- Voice TTS/STT implementation from LocalEmotionalAIVoiceChat
- LLM agent from memory-agent
- Real-time speech-to-text input
- Cnversation generation powered by: Ollama, LMStudio, OpenAI, Anthropic or llama.cpp Webserver
- Emotion-aware realtime text-to-speech output
- Configurable system and user personas
- Python <=3.10 (3.10.9 is recommended)
- Docker for redis and langraph
- Clone the repository
git clone https://github.com/emingenc/G1_voice_ai_assistant.git
cd G1_voice_ai_assistant
- Install the required packages
- venv (optional)
python -m venv venv
source venv/bin/activate
- Install the required packages
pip install -r requirements.txt
- setup the environment variables in llm_agent folder example .env file
cp llm_agent/.env.example llm_agent/.env
Run the scripts in different terminals to start the system:
- start the langraph
cd llm_agent
langgraph up
cd ..
- start the redis
docker run --name my-redis -p 6379:6379 -d redis
- start g1 smart glass connection
python g1_smart_glass.py
- start the voice ai assistant
python voice_ai_assistant.py