Skip to content

endremborza/BigO.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

39 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

BigO

Stable Dev Build Status Coverage

Julia library for complexity plotting and estimation

Quickstart

using Random
using BigO



function lamesort!(a)
    for i in axes(a,1)
        for j in 1:i
            if a[i] < a[j]
                 a[j], a[i] = a[i], a[j]
            end
        end
    end
end

function _merge(a1::AbstractArray{T, 1}, a2::AbstractArray{T, 1}) where {T}
    n1, n2 = size(a1,1), size(a2,1)
    n = n1 + n2
    out = Array{T,1}(undef, n)
    i, j = 1, 1
    while i + j <= n + 1
        if (i > n1) e = a2[j]; j += 1
        elseif (j > n2) e = a1[i]; i += 1
        elseif (a1[i] > a2[j]) e = a2[j]; j += 1
        else e = a1[i]; i += 1 end
        out[i+j - 2 ] = e
    end
    return out
end

function mergesort(a)
    n = size(a, 1)
    n == 1 && return a
    h = n ÷ 2
    return _merge(mergesort(a[1:h]), mergesort(a[h+1:n]))
end


report = RunReport([mergesort, lamesort!], randperm, 100:1000:10100, seconds=0.2; samples=200)
report |> bigos

Dict{String,String} with 2 entries: "mergesort" => "O(n log n)" "lamesort!" => "O(n^p)"

using Plots
report |> plot

plot

About

Complexity estimation library

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages