Skip to content

[EMNLP 2022] Discovering Language-neutral Sub-networks in Multilingual Language Models.

License

Notifications You must be signed in to change notification settings

epfl-nlp/multiLMs-lang-neutral-subnets

 
 

Repository files navigation

Discovering Language-neutral Sub-networks in Multilingual Language Models

License: MIT

Code for the paper: "Discovering Language-neutral Sub-networks in Multilingual Language Models" [to appear in EMNLP 2022]

The following figure shows an overview of our approach. We discover sub-networks in the original multilingual language model that are good foundations for learning various tasks and languages (a). Then, we investigate to what extent these sub-networks are similar by transferring them across other task-language pairs (b). In this example, the blue and red lines show sub-networks found for French and Urdu, respectively, and purple connections are shared in both sub-networks. Dashed lines show the weights that are removed in the pruning phase.

alt text

Requirements

We recommend using a conda environment for running the scripts. You can run the following commands to create the conda environment (assuming CUDA11.3):

conda create -n mbert_tickets python=3.6.10
conda activate mbert_tickets
pip install -r requirements.txt
conda install faiss-cpu -c pytorch

Usage

In all the following experiments, you can either pass the arguments directly to the python script or specify the arguments in a JSON file and pass the file path to the script. You can find examples of such a JSON file in the configs folder.

Extract Sub-networks

MLM task:

To prepare the data for each language you need to perform the following steps:

  1. Download the wikipedia dump of the language, e.g. https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2 for English.

  2. Install the Wikiextractor to extract and clean the Wikipedia data.

  3. Process and clean the data using the Wikiextractor script and generate a JSON file.

    python -m wikiextractor.WikiExtractor <Wikipedia dump file (xml file)> --output en.data.json --bytes 100G --json --quiet

  4. Divide the data (en.data.json) into train and validation partitions and create en.train.json and en.valid.json. Alternatively, you can use the whole data as the train partition, and specify the validation ratio by val_data_ratio argument.

python LT_pretrain.py \
	--output_dir LT_pretrain_model \
	--model_type mbert \
	--model_name_or_path bert-base-multilingual-cased \
	--train_file pretrain_data/en.train.json \
	--do_train \
	--validation_file pretrain_data/en.valid.json \
	--do_eval \
	--per_device_train_batch_size 16 \
	--per_device_eval_batch_size 16 \
	--evaluate_during_training \
	--num_train_epochs 1 \
	--logging_steps 10000 \
	--save_steps 10000 \
	--mlm \
	--overwrite_output_dir \
	--seed 57

NER task:

python LT_ner.py \
	--output_dir tmp/ner \
	--data_language fr \
	--task_name ner \
	--dataset_name wikiann \
	--model_name_or_path bert-base-multilingual-cased \
	--do_train \
	--do_eval \
	--max_seq_length 128 \
	--per_device_train_batch_size 32 \
	--per_device_eval_batch_size 32 \
	--learning_rate 2e-5 \
	--num_train_epochs 30 \
	--overwrite_output_dir \
	--evaluate_during_training \
	--logging_steps 1875 \
	--save_steps 1875 \
	--pad_to_max_length \
	--seed 57

XNLI task:

To run experiments for the mBERT model use LT_xnli.py, and to run experiments for the mT5 model use LT_mt5_xnli.py.

python LT_xnli.py \
	--output_dir tmp/xnli \
	--data_language fr \
	--task_name xnli \
	--dataset_name xnli \
	--model_name_or_path bert-base-multilingual-cased \
	--do_train \
	--do_eval \
	--max_seq_length 128 \
	--per_device_train_batch_size 32 \
	--per_device_eval_batch_size 32 \
	--learning_rate 5e-5 \
	--num_train_epochs 30  \
	--overwrite_output_dir \
	--evaluate_during_training \
	--logging_steps 36813 \
	--save_steps 36813 \
	--pad_to_max_length \
	--seed 57

Fine-tuning Sub-networks

MLM task:

To prepare the data for the MLM task follow the steps mentioned here.

python pretrain_trans.py \
	--mask_dir tmp/dif_mask/pretrain_mask.pt \
	--output_dir tmp/fine-tuning/pre \
	--model_type mbert \
	--mlm \
	--model_name_or_path bert-base-multilingual-cased \
	--train_file pretrain_data/en.train.json \
	--do_train \
	--validation_file pretrain_data/en.valid.json \
	--do_eval \
	--per_device_train_batch_size 16 \
	--per_device_eval_batch_size 16 \
	--evaluate_during_training \
	--num_train_epochs 1 \
	--logging_steps 2000 \
	--save_steps 0 \
	--max_steps 20000 \
	--overwrite_output_dir \
	--seed 57 \
	--weight_init pre  #[using random weight or official pretrain weight]

NER task:

python ner_fine_tune.py \
	--mask_dir tmp/ner_mask/fr_mask.pt \
	--output_dir tmp/fine-tuning/ner/fr \
	--task_name ner \
	--dataset_name wikiann \
	--data_language fr \
	--model_name_or_path bert-base-multilingual-cased \
	--do_train \
	--do_eval \
	--max_seq_length 128 \
	--per_device_train_batch_size 32 \
	--per_device_eval_batch_size 32 \
	--learning_rate 2e-5 \
	--num_train_epochs 3 \
	--overwrite_output_dir \
	--evaluate_during_training \
	--pad_to_max_length \
	--logging_steps 1875 \
	--save_steps 0 \
	--seed 5 \
	--weight_init pre  #[using random weight or official pretrain weight]

XNLI task (mBERT model):

python xnli_fine_tune.py \
	--mask_dir tmp/xnli_mask/fr_mask.pt \
	--output_dir tmp/fine-tuning/xnli/fr \
	--model_name_or_path bert-base-multilingual-cased \
	--dataset_name xnli \
	--data_language fr \
	--do_train \
	--do_eval \
	--per_device_train_batch_size 32 \
	--per_device_eval_batch_size 32 \
	--learning_rate 5e-5 \
	--num_train_epochs 3 \
	--max_seq_length 128 \
	--evaluate_during_training \
	--overwrite_output_dir \
	--logging_steps 1227 \
	--save_steps 0 \
	--seed 57 \
	--weight_init pre  #[using random weight or official pretrain weight]

XNLI task (mT5 model):

python mt5_xnli_fine_tune.py \
	--mask_dir tmp/xnli_mask/fr_mask.pt \
	--output_dir tmp/fine-tuning/xnli/fr \
	--model_name_or_path google/mt5-base \
	--dataset_name xnli \
	--data_language fr \
	--do_train \
	--do_eval \
	--per_device_train_batch_size 32 \
	--per_device_eval_batch_size 32 \
	--learning_rate 2e-4 \
	--num_train_epochs 3 \
	--max_seq_length 256 \
	--max_source_length 128 \
	--max_target_length 16 \
	--val_max_target_length 5 \
	--evaluate_during_training \
	--overwrite_output_dir \
	--pad_to_max_length \
	--logging_steps 1227 \
	--save_steps 0 \
	--seed 57 \
	--weight_init pre  #[using random weight or official pretrain weight]

Citation

If you use this code for your research, please cite our paper:

@article{foroutan2022discovering,
  title={Discovering Language-neutral Sub-networks in Multilingual Language Models},
  author={Foroutan, Negar and Banaei, Mohammadreza and Lebret, Remi and Bosselut, Antoine and Aberer, Karl},
  journal={arXiv preprint arXiv:2205.12672},
  year={2022}
}

About

[EMNLP 2022] Discovering Language-neutral Sub-networks in Multilingual Language Models.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%