-
Notifications
You must be signed in to change notification settings - Fork 2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Perceptron.py shows a simple Perceptron model capable of backpropagation and how exactly the weights are updated and visualization of the same, considering 2 input nodes and 1 output nodes. Activation function is sigmoid and loss function is mean squared error.
- Loading branch information
Showing
1 changed file
with
89 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from matplotlib.animation import FuncAnimation | ||
|
||
class Perceptron: | ||
def __init__(self, learning_rate=0.1, max_iters=100): | ||
# Initialize parameters | ||
self.learning_rate = learning_rate | ||
self.max_iters = max_iters | ||
self.weights = None | ||
self.bias = None | ||
self.history = [] | ||
|
||
def sigmoid(self, x): | ||
# Sigmoid activation function | ||
return 1 / (1 + np.exp(-x)) | ||
|
||
def fit(self, X, y): | ||
# Initialize weights and bias | ||
n_samples, n_features = X.shape | ||
self.weights = np.random.randn(n_features) | ||
self.bias = 1 | ||
|
||
for _ in range(self.max_iters): | ||
correct_classifications = True # Track if all predictions are correct | ||
|
||
for i, x_i in enumerate(X): | ||
# Compute linear combination and apply sigmoid | ||
linear_output = np.dot(x_i, self.weights) + self.bias | ||
y_pred = self.sigmoid(linear_output) | ||
|
||
# Classify based on sigmoid output | ||
predicted_label = 1 if y_pred >= 0.5 else 0 | ||
|
||
# If misclassified, update weights and bias | ||
if predicted_label != y[i]: | ||
correct_classifications = False | ||
error = y[i] - y_pred | ||
self.weights += self.learning_rate * error * x_i | ||
self.bias += self.learning_rate * error | ||
|
||
# Store history for visualization | ||
self.history.append((self.weights.copy(), self.bias)) | ||
|
||
# Stop if all samples are classified correctly | ||
if correct_classifications: | ||
break | ||
|
||
def get_history(self): | ||
# Return history of updates | ||
return self.history | ||
|
||
def animate(i): | ||
# Get weights and bias for the current iteration | ||
weights, bias = history[i] | ||
ax.clear() | ||
|
||
# Plot data points | ||
for j in range(len(y)): | ||
if y[j] == 1: | ||
ax.scatter(X[j, 0], X[j, 1], marker='o', color='blue', s=100) | ||
else: | ||
ax.scatter(X[j, 0], X[j, 1], marker='x', color='red', s=100) | ||
|
||
# Plot decision boundary | ||
x_values = np.linspace(min(X[:, 0])-1, max(X[:, 0])+1, 100) | ||
y_values = -(weights[0] * x_values + bias) / weights[1] | ||
ax.plot(x_values, y_values, color='green') | ||
|
||
ax.set_xlim(min(X[:, 0])-2, max(X[:, 0])+2) | ||
ax.set_ylim(min(X[:, 1])-2, max(X[:, 1])+2) | ||
ax.set_title(f'Iteration {i+1}') | ||
|
||
# Training data | ||
X = np.array([[2, 1], [-2, -1], [1, -2], [-1, -2], [2, -1], [-1, 1], [3, 4]]) | ||
y = np.array([1, 0, 1, 0, 1, 0, 0]) | ||
|
||
# Train perceptron model | ||
perceptron = Perceptron(learning_rate=0.1, max_iters=100) | ||
perceptron.fit(X, y) | ||
|
||
# Get history of weight updates for animation | ||
history = perceptron.get_history() | ||
|
||
# Set up plot for animation | ||
fig, ax = plt.subplots() | ||
plt.grid(True) | ||
ani = FuncAnimation(fig, animate, frames=len(history), interval=500, repeat=False) | ||
plt.show() |