-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Guotai Wang
committed
Sep 26, 2018
1 parent
fff7318
commit 1933560
Showing
5 changed files
with
296 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
export PYTHONPATH="${PYTHONPATH}:./" | ||
python Demic/test/test_convert_to_tfrecords.py config/write_tfrecords_fb.txt |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
#$ -P gpu | ||
#$ -l gpu=1 | ||
#$ -l gpu_pascal=1 | ||
#$ -l h_rt=10:0:0 | ||
#$ -l tmem=10.0G | ||
##$ -l h=tesla5 | ||
#$ -N pnet_test | ||
#$ -S /bin/bash | ||
#$ -wd /home/guotwang/tf_project/test_aug/brats/bash | ||
#!/bin/bash | ||
# The lines above are resource requests. This script has requested 1 Titan X (Pascal) GPU for 24 hours, and 11.5 GB of memory to be started with the BASH Shell. | ||
# More information about resource requests can be found at http://hpc.cs.ucl.ac.uk/job_submission_sge/ | ||
|
||
# This line ensures that you only use the 1 GPU requested. | ||
nvidia-smi | ||
export CUDA_VISIBLE_DEVICES=$(( `nvidia-smi | grep " / .....MiB"|grep -n " ...MiB / [0-9]....MiB"|cut -d : -f 1|head -n 1` - 1 )) | ||
echo $CUDA_VISIBLE_DEVICES | ||
if [ $CUDA_VISIBLE_DEVICES -lt 0 ];then | ||
exit 1 | ||
fi | ||
# These lines runs your NiftyNet task with the correct library paths for tensorflow | ||
TF_LD_LIBRARY_PATH=/share/apps/libc6_2.17/lib/x86_64-linux-gnu/:/share/apps/libc6_2.17/usr/lib64/:/share/apps/gcc-6.2.0/lib64:/share/apps/gcc-6.2.0/lib:/share/apps/python-3.6.0-shared/lib:/share/apps/cuda-8.0/lib64:/share/apps/cuda-8.0/extras/CUPTI/lib64:$LD_LIBRARY_PATH | ||
export PYTHONPATH="${PYTHONPATH}:/home/guotwang/tf_project/fetal_brain_seg/NiftyNet" | ||
|
||
# iou evaluation | ||
#/share/apps/libc6_2.17/lib/x86_64-linux-gnu/ld-2.17.so --library-path $TF_LD_LIBRARY_PATH $(command -v /home/guotwang/miniconda3/bin/python3) /home/guotwang/tf_project/fetal_brain_seg/Demic/util/iou_evaluation.py /home/guotwang/tf_project/fetal_brain_seg/config/evaluate.txt | ||
|
||
# centroid distance evaluation | ||
#/share/apps/libc6_2.17/lib/x86_64-linux-gnu/ld-2.17.so --library-path $TF_LD_LIBRARY_PATH $(command -v /home/guotwang/miniconda3/bin/python3) /home/guotwang/tf_project/fetal_brain_seg/Demic/util/detect_dis_evaluation.py /home/guotwang/tf_project/fetal_brain_seg/config/evaluate.txt | ||
|
||
# Dice evaluation | ||
#/share/apps/libc6_2.17/lib/x86_64-linux-gnu/ld-2.17.so --library-path $TF_LD_LIBRARY_PATH $(command -v /home/guotwang/miniconda3/bin/python3) /home/guotwang/tf_project/fetal_brain_seg/Demic/util/dice_evaluation.py /home/guotwang/tf_project/fetal_brain_seg/config/evaluate.txt | ||
|
||
# hausdorff evaluation | ||
/share/apps/libc6_2.17/lib/x86_64-linux-gnu/ld-2.17.so --library-path $TF_LD_LIBRARY_PATH $(command -v /home/guotwang/miniconda3/bin/python3) /home/guotwang/tf_project/fetal_brain_seg/Demic/util/hausdorff_evaluation.py /home/guotwang/tf_project/fetal_brain_seg/config/evaluate.txt |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,27 @@ | ||
#$ -P gpu | ||
#$ -l gpu=1 | ||
#$ -l gpu_pascal=1 | ||
#$ -l h_rt=10:0:0 | ||
#$ -l tmem=10.0G | ||
##$ -l h=tesla5 | ||
#$ -N unet3d | ||
#$ -S /bin/bash | ||
#$ -wd /home/guotwang/tf_project/fetal_brain_seg/bash | ||
#!/bin/bash | ||
# The lines above are resource requests. This script has requested 1 Titan X (Pascal) GPU for 24 hours, and 11.5 GB of memory to be started with the BASH Shell. | ||
# More information about resource requests can be found at http://hpc.cs.ucl.ac.uk/job_submission_sge/ | ||
|
||
# This line ensures that you only use the 1 GPU requested. | ||
nvidia-smi | ||
export CUDA_VISIBLE_DEVICES=$(( `nvidia-smi | grep " / .....MiB"|grep -n " ...MiB / [0-9]....MiB"|cut -d : -f 1|head -n 1` - 1 )) | ||
echo $CUDA_VISIBLE_DEVICES | ||
if [ $CUDA_VISIBLE_DEVICES -lt 0 ];then | ||
exit 1 | ||
fi | ||
# These lines runs your NiftyNet task with the correct library paths for tensorflow | ||
TF_LD_LIBRARY_PATH=/share/apps/libc6_2.17/lib/x86_64-linux-gnu/:/share/apps/libc6_2.17/usr/lib64/:/share/apps/gcc-6.2.0/lib64:/share/apps/gcc-6.2.0/lib:/share/apps/python-3.6.0-shared/lib:/share/apps/cuda-8.0/lib64:/share/apps/cuda-8.0/extras/CUPTI/lib64:$LD_LIBRARY_PATH | ||
export PYTHONPATH="${PYTHONPATH}:/home/guotwang/tf_project/fetal_brain_seg/NiftyNet:/home/guotwang/tf_project/fetal_brain_seg" | ||
|
||
#/share/apps/libc6_2.17/lib/x86_64-linux-gnu/ld-2.17.so --library-path $TF_LD_LIBRARY_PATH $(command -v /home/guotwang/miniconda3/bin/python3) /home/guotwang/tf_project/fetal_brain_seg/Demic/train_test/model_train.py /home/guotwang/tf_project/fetal_brain_seg/config/detect/train_unet3d.txt | ||
|
||
/share/apps/libc6_2.17/lib/x86_64-linux-gnu/ld-2.17.so --library-path $TF_LD_LIBRARY_PATH $(command -v /home/guotwang/miniconda3/bin/python3) /home/guotwang/tf_project/fetal_brain_seg/Demic/train_test/model_train.py /home/guotwang/tf_project/fetal_brain_seg/config/segment/train_unet-ml.txt |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
[dataset] | ||
# filename of tfrecords | ||
# (required, string) | ||
data_train = [/home/guotwang/data/FetalBrain/tf_records/hp_train.tfrecords] | ||
|
||
data_valid0 = [/home/guotwang/data/FetalBrain/tf_records/h_valid.tfrecords] | ||
data_valid1 = [/home/guotwang/data/FetalBrain/tf_records/p_valid.tfrecords] | ||
|
||
[sampler] | ||
# batch size to load | ||
# (optional, integer, default is 5) | ||
batch_size = 1 | ||
|
||
# patch shape [D, H, W, C] | ||
# (required, list) | ||
data_shape = [20, 96, 96, 1] | ||
weight_shape= [20, 96, 96, 1] | ||
label_shape = [20, 96, 96, 1] | ||
|
||
# whether load ground truth or not | ||
# (optional, bool, default is False) | ||
with_ground_truth = True | ||
|
||
# data augmentation | ||
# a list with angles in radians, e.g. [-3.14, 3.14] | ||
# (optional, list of float, default is None) enabled when patch_mode = 1 | ||
random_rotate = [-3.14, 3.14] | ||
|
||
# a bool denoting left right flip or not | ||
# (optional, bool, default is False) | ||
flip_left_right = True | ||
|
||
# a bool denoting up down flip or not | ||
# (optional, bool, default is False) | ||
flip_up_down = True | ||
|
||
# two lists of label convert, each label in label_convert_source is converted to the corresponding one in label_convert_target, used for segmentation task | ||
# (optional, list, default is None) | ||
label_convert_source = [0, 1, 2, 3, 4] | ||
label_convert_target = [0, 1, 0, 0, 0] | ||
|
||
# patch sampling mode | ||
# 0: for segmentation, randomly sample patch with fixed size, | ||
# 1: for segmentation, crop with bounding box and resize within plane, | ||
# and randomly sample along z axis | ||
# 2: resize 2d images to given size | ||
# 3: randomly using 1 and 2 | ||
# (required, integer) | ||
patch_mode = 2 | ||
|
||
# bounding box margin for along z,y,x axis. (when patch_mode = 1 ) | ||
# (optional, list of integers, default is [0,0,0]) | ||
bounding_box_margin = [3,8,8] | ||
|
||
[network] | ||
# type of network | ||
# (required, string) | ||
net_type = PNet | ||
|
||
# name of network | ||
# (required, string) | ||
net_name = pnet | ||
|
||
# bn_training, True: use batch mean False: use moving mean | ||
# (optional, bool, default: True) | ||
bn_training = True | ||
|
||
# number of class, required for segmentation task | ||
# (optional, integer) | ||
class_num = 2 | ||
|
||
[network_parameter] | ||
|
||
[training] | ||
# application type, 0 segmentation, 1 regression | ||
# (required, integer) | ||
app_type = 0 | ||
|
||
# seed of random number, an integer | ||
# (optional, integer, default is 0) | ||
random_seed = 0 | ||
|
||
# start epoch | ||
# (required, integer) | ||
start_iter = 0 | ||
|
||
# maximal epoch | ||
# (required, integer) | ||
maximal_iter = 5000 | ||
|
||
# snapshot epoch | ||
# (required, integer) | ||
snapshot_iter = 1000 | ||
|
||
# pertained model, used for fine-tuning, required if start_epoch > 0 | ||
# (optional, string, default is None) | ||
pretrained_model = | ||
|
||
# model_save_prefix | ||
# (required, string) | ||
model_save_prefix = model/detect/pnet_test | ||
|
||
|
||
test_interval = 50 | ||
|
||
# number of batch for testing in each epoch | ||
# (required, integer) | ||
test_steps = 2 | ||
|
||
# learning rate | ||
# (optional, float, default is 1e-3) | ||
learning_rate = 1e-3 | ||
|
||
# weight decay | ||
# (optional, float, default is 1e-7) | ||
decay = 1e-7 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
[dataset] | ||
# filename of tfrecords | ||
# (required, string) | ||
data_train = [/mnt/shared/guotai/data/tf_records/hp_train.tfrecords] | ||
|
||
data_valid0 = [/mnt/shared/guotai/data/tf_records/h_valid.tfrecords] | ||
data_valid1 = [/mnt/shared/guotai/data/tf_records/p_valid.tfrecords] | ||
|
||
[sampler] | ||
# batch size to load | ||
# (optional, integer, default is 5) | ||
batch_size = 1 | ||
|
||
# patch shape [D, H, W, C] | ||
# (required, list) | ||
data_shape = [10, 96, 96, 1] | ||
weight_shape= [10, 96, 96, 1] | ||
label_shape = [10, 96, 96, 1] | ||
|
||
# whether load ground truth or not | ||
# (optional, bool, default is False) | ||
with_ground_truth = True | ||
|
||
# data augmentation | ||
# a list with angles in radians, e.g. [-3.14, 3.14] | ||
# (optional, list of float, default is None) | ||
random_rotate = [-3.14, 3.14] | ||
|
||
# a bool denoting left right flip or not | ||
# (optional, bool, default is False) | ||
flip_left_right = True | ||
|
||
# a bool denoting up down flip or not | ||
# (optional, bool, default is False) | ||
flip_up_down = True | ||
|
||
# two lists of label convert, each label in label_convert_source is converted to the corresponding one in label_convert_target, used for segmentation task | ||
# (optional, list, default is None) | ||
label_convert_source = [0, 1, 2, 3, 4] | ||
label_convert_target = [0, 1, 0, 0, 0] | ||
|
||
# patch sampling mode | ||
# 0: for segmentation, randomly sample patch with fixed size, | ||
# 1: for segmentation, crop with bounding box and resize within plane, | ||
# and randomly sample along z axis | ||
# 2: for regression, resize image to fixed size, | ||
# resize 2d images to given size, and get spatial transformer parameters | ||
# (required, integer) | ||
patch_mode = 1 | ||
|
||
# bounding box margin for along z,y,x axis. (when patch_mode = 1 or 2) | ||
# (optional, list of integers, default is [0,0,0]) | ||
bounding_box_margin = [5,20,20] | ||
|
||
[network] | ||
# type of network | ||
# (required, string) | ||
net_type = PNet | ||
|
||
# name of network | ||
# (required, string) | ||
net_name = pnet | ||
|
||
# bn_training, True: use batch mean False: use moving mean | ||
# (optional, bool, default: True) | ||
bn_training = True | ||
|
||
# number of class, required for segmentation task | ||
# (optional, integer) | ||
class_num = 2 | ||
|
||
[network_parameter] | ||
|
||
[training] | ||
# application type, 0 segmentation, 1 regression | ||
# (required, integer) | ||
app_type = 0 | ||
|
||
# seed of random number, an integer | ||
# (optional, integer, default is 0) | ||
random_seed = 0 | ||
|
||
# start epoch | ||
# (required, integer) | ||
start_iter = 0 | ||
|
||
# maximal epoch | ||
# (required, integer) | ||
maximal_iter = 5000 | ||
|
||
# snapshot epoch | ||
# (required, integer) | ||
snapshot_iter = 500 | ||
|
||
# pertained model, used for fine-tuning, required if start_epoch > 0 | ||
# (optional, string, default is None) | ||
pretrained_model = | ||
|
||
multi_scale_loss = True | ||
# model_save_prefix | ||
# (required, string) | ||
model_save_prefix = model/pnet-s10-ml/pnet | ||
|
||
test_interval = 50 | ||
|
||
# number of batch for testing in each epoch | ||
# (required, integer) | ||
test_steps = 2 | ||
|
||
# learning rate | ||
# (optional, float, default is 1e-3) | ||
learning_rate = 1e-3 | ||
|
||
# weight decay | ||
# (optional, float, default is 1e-7) | ||
decay = 1e-7 |