-
Notifications
You must be signed in to change notification settings - Fork 2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
270 additions
and
0 deletions.
There are no files selected for viewing
270 changes: 270 additions & 0 deletions
270
h2o-py-mlflow-flavors/h2o_mlflow_flavors/h2o_gen_model.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,270 @@ | ||
""" | ||
The `h2o_mlflow_flavors.h2o_gen_model` module provides an API for working with H2O MOJO and POJO models. | ||
""" | ||
|
||
import logging | ||
import os | ||
import tempfile | ||
import pandas | ||
import subprocess | ||
import sys | ||
|
||
import yaml | ||
|
||
import mlflow | ||
from mlflow import pyfunc | ||
from mlflow.models import Model | ||
from mlflow.models.model import MLMODEL_FILE_NAME | ||
from mlflow.models.utils import _save_example | ||
from mlflow.models.signature import ModelSignature | ||
from mlflow.models.utils import ModelInputExample | ||
from mlflow.utils.environment import ( | ||
_CONDA_ENV_FILE_NAME, | ||
_CONSTRAINTS_FILE_NAME, | ||
_PYTHON_ENV_FILE_NAME, | ||
_REQUIREMENTS_FILE_NAME, | ||
_mlflow_conda_env, | ||
_process_conda_env, | ||
_process_pip_requirements, | ||
_PythonEnv, | ||
_validate_env_arguments, | ||
) | ||
|
||
from mlflow.utils.file_utils import write_to | ||
from mlflow.utils.model_utils import ( | ||
_add_code_from_conf_to_system_path, | ||
_get_flavor_configuration, | ||
_validate_and_copy_code_paths, | ||
_validate_and_prepare_target_save_path, | ||
) | ||
from mlflow.utils.requirements_utils import _get_pinned_requirement | ||
from mlflow.tracking.artifact_utils import _download_artifact_from_uri | ||
|
||
|
||
_logger = logging.getLogger(__name__) | ||
|
||
FLAVOR_NAME = "h2o_gen_model" | ||
|
||
|
||
def get_default_pip_requirements(): | ||
""" | ||
:return: A list of default pip requirements for MLflow Models produced by this flavor. | ||
Calls to :func:`save_model()` and :func:`log_model()` produce a pip environment | ||
that, at minimum, contains these requirements. | ||
""" | ||
return [] | ||
|
||
|
||
def get_default_conda_env(): | ||
""" | ||
:return: The default Conda environment for MLflow Models produced by calls to | ||
:func:`save_model()` and :func:`log_model()`. | ||
""" | ||
return _mlflow_conda_env(additional_pip_deps=get_default_pip_requirements()) | ||
|
||
|
||
def save_model( | ||
h2o_model, | ||
path, | ||
conda_env=None, | ||
code_paths=None, | ||
mlflow_model=None, | ||
signature=None, | ||
input_example=None, | ||
pip_requirements=None, | ||
extra_pip_requirements=None, | ||
model_type="MOJO" | ||
): | ||
import h2o | ||
|
||
model_type_upper = model_type.upper() | ||
if model_type_upper != "MOJO" and model_type_upper != "POJO": | ||
raise ValueError(f"The `model_type` parameter must be 'MOJO' or 'POJO'. The passed value was '{model_type}'.") | ||
|
||
_validate_env_arguments(conda_env, pip_requirements, extra_pip_requirements) | ||
_validate_and_prepare_target_save_path(path) | ||
code_dir_subpath = _validate_and_copy_code_paths(code_paths, path) | ||
|
||
if mlflow_model is None: | ||
mlflow_model = Model() | ||
if signature is not None: | ||
mlflow_model.signature = signature | ||
if input_example is not None: | ||
_save_example(mlflow_model, input_example, path) | ||
|
||
if model_type_upper == "MOJO": | ||
model_data_path = h2o_model.download_mojo(path=path, get_genmodel_jar=True) | ||
model_file = os.path.basename(model_data_path) | ||
else: | ||
model_data_path = h2o_model.downlaod_pojo(path=path, get_genmodel_jar=True) | ||
javac_cmd = ["javac", "-cp", h2o_genmodel_jar, "-J-Xmx12g", java_file] | ||
subprocess.check_call(javac_cmd) | ||
model_file = os.path.basename(model_data_path).replace(".java", ".class") | ||
|
||
pyfunc.add_to_model( | ||
mlflow_model, | ||
loader_module="h2o_mlflow_flavors.h2o_gen_model", | ||
model_path=model_file, | ||
conda_env=_CONDA_ENV_FILE_NAME, | ||
python_env=_PYTHON_ENV_FILE_NAME, | ||
code=code_dir_subpath, | ||
) | ||
|
||
mlflow_model.add_flavor( | ||
FLAVOR_NAME, | ||
model_file=model_file, | ||
model_type=model_type_upper, | ||
h2o_version=h2o.__version__, | ||
code=code_dir_subpath, | ||
) | ||
mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME)) | ||
|
||
if conda_env is None: | ||
if pip_requirements is None: | ||
default_reqs = get_default_pip_requirements() | ||
inferred_reqs = mlflow.models.infer_pip_requirements( | ||
path, FLAVOR_NAME, fallback=default_reqs | ||
) | ||
default_reqs = sorted(set(inferred_reqs).union(default_reqs)) | ||
else: | ||
default_reqs = None | ||
conda_env, pip_requirements, pip_constraints = _process_pip_requirements( | ||
default_reqs, pip_requirements, extra_pip_requirements | ||
) | ||
else: | ||
conda_env, pip_requirements, pip_constraints = _process_conda_env(conda_env) | ||
|
||
with open(os.path.join(path, _CONDA_ENV_FILE_NAME), "w") as f: | ||
yaml.safe_dump(conda_env, stream=f, default_flow_style=False) | ||
|
||
if pip_constraints: | ||
write_to(os.path.join(path, _CONSTRAINTS_FILE_NAME), "\n".join(pip_constraints)) | ||
|
||
write_to(os.path.join(path, _REQUIREMENTS_FILE_NAME), "\n".join(pip_requirements)) | ||
|
||
_PythonEnv.current().to_yaml(os.path.join(path, _PYTHON_ENV_FILE_NAME)) | ||
|
||
|
||
def log_model( | ||
h2o_model, | ||
artifact_path, | ||
conda_env=None, | ||
code_paths=None, | ||
registered_model_name=None, | ||
signature: ModelSignature = None, | ||
input_example: ModelInputExample = None, | ||
pip_requirements=None, | ||
extra_pip_requirements=None, | ||
metadata=None, | ||
model_type="MOJO", | ||
**kwargs, | ||
): | ||
""" | ||
Log an H2O model as an MLflow artifact for the current run. | ||
:param h2o_model: H2O model to be saved. | ||
:param artifact_path: Run-relative artifact path. | ||
:param conda_env: {{ conda_env }} | ||
:param code_paths: A list of local filesystem paths to Python file dependencies (or directories | ||
containing file dependencies). These files are *prepended* to the system | ||
path when the model is loaded. | ||
:param registered_model_name: If given, create a model version under | ||
``registered_model_name``, also creating a registered model if one | ||
with the given name does not exist. | ||
:param signature: {{ signature }} | ||
:param input_example: {{ input_example }} | ||
:param pip_requirements: {{ pip_requirements }} | ||
:param extra_pip_requirements: {{ extra_pip_requirements }} | ||
:param metadata: Custom metadata dictionary passed to the model and stored in the MLmodel file. | ||
.. Note:: Experimental: This parameter may change or be removed in a future | ||
release without warning. | ||
:param model_type: A flag deciding whether the model is MOJO or POJO. | ||
:param kwargs: kwargs to pass to ``h2o.save_model`` method. | ||
:return: A :py:class:`ModelInfo <mlflow.models.model.ModelInfo>` instance that contains the | ||
metadata of the logged model. | ||
""" | ||
import h2o_mlflow_flavors | ||
return Model.log( | ||
artifact_path=artifact_path, | ||
flavor=h2o_mlflow_flavors.h2o_gen_model, | ||
registered_model_name=registered_model_name, | ||
h2o_model=h2o_model, | ||
conda_env=conda_env, | ||
code_paths=code_paths, | ||
signature=signature, | ||
input_example=input_example, | ||
pip_requirements=pip_requirements, | ||
extra_pip_requirements=extra_pip_requirements, | ||
model_type=model_type, | ||
metadata=metadata, | ||
**kwargs, | ||
) | ||
|
||
|
||
def load_model(model_uri, dst_path=None): | ||
path = _download_artifact_from_uri( | ||
artifact_uri=model_uri, output_path=dst_path | ||
) | ||
return _load_model(path) | ||
|
||
|
||
def _load_model(path): | ||
flavor_conf = _get_flavor_configuration(model_path=path, flavor_name=FLAVOR_NAME) | ||
model_type = flavor_conf["model_type"] | ||
model_path = os.path.join(path, flavor_conf["model_file"]) | ||
genmodel_jar_path = os.path.join(path, "h2o-genmodel.jar") | ||
|
||
return _H2OModelWrapper(flavor_conf["model_file"], model_path, model_type, genmodel_jar_path) | ||
|
||
|
||
class _H2OModelWrapper: | ||
def __init__(self, model_file, model_path, model_type, genmodel_jar_path): | ||
self.model_file = model_file | ||
self.model_path = model_path | ||
self.model_type = model_type | ||
self.genmodel_jar_path = genmodel_jar_path | ||
|
||
def predict(self, dataframe, params=None): | ||
""" | ||
:param dataframe: Model input data. | ||
:param params: Additional parameters to pass to the model for inference. | ||
:return: Model predictions. | ||
""" | ||
with tempfile.TemporaryDirectory() as tempdir: | ||
input_file = os.path.join(tempdir, "input.csv") | ||
output_file = os.path.join(tempdir, "output.csv") | ||
dataframe.to_csv(input_file) | ||
|
||
if self.model_type == "MOJO": | ||
class_path = self.genmodel_jar_path | ||
type_parameter = "--mojo" | ||
model_artefact = self.model_path | ||
else: | ||
class_path_separator = ";" if sys.platform == "win32" else ":" | ||
class_path = self.genmodel_jar_path + class_path_separator + self.model_path | ||
type_parameter = "--pojo" | ||
model_artefact = self.model_file.replace(".class", "") | ||
|
||
java_cmd = ["java", "-cp", class_path, | ||
"-ea", "-Xmx12g", "-XX:ReservedCodeCacheSize=256m", "-XX:MaxPermSize=2g", | ||
"hex.genmodel.tools.PredictCsv", | ||
"--input", input_file, "--output", output_file, type_parameter, model_artefact, "--decimal"] | ||
ret = subprocess.call(java_cmd) | ||
assert ret == 0, "GenModel finished with return code %d." % ret | ||
predicted = pandas.read_csv(output_file) | ||
predicted.index = dataframe.index | ||
return predicted | ||
|
||
|
||
def _load_pyfunc(path): | ||
""" | ||
Load PyFunc implementation. Called by ``pyfunc.load_model``. | ||
:param path: Local filesystem path to the MLflow Model with the ``h2o`` flavor. | ||
""" | ||
return _load_model(path) | ||
|
||
|