Skip to content

Commit

Permalink
Add containers/tgi/gpu/2.3.1/Dockerfile (#96)
Browse files Browse the repository at this point in the history
* Add `containers/tgi/gpu/2.3.0/Dockerfile` starting image

* Update `containers/tgi/gpu/2.3.0/Dockerfile`

- Clones TGI from the latest release on `main` on top to use the cloned
repository as reference for the files required during the build (before
TGI 2.3.0 is released)
- Removes the build args for `GIT_SHA` and `DOCKER_LABEL` as not
required or used
- Decreases the `MAX_JOBS` arg from 8 to 4 (can be tweaked depending
onthe instance used to build the image)
- Sets the `HUGGINGFACE_HUB_CACHE` environment variable to `/tmp`
instead of the default `/data`, and sets the `PORT` to 8080 instead of
the default 80, since that's the default open port in GCP instances
- Removes the AWS SageMaker steps in favour of a custom final step
installing `google-cloud-sdk` and running a custom `entrypoint.sh` that
handles the download of the artifacts provided via
`AIP_STORAGE_URI`(when provided in Vertex AI)

* Add `containers/tgi/gpu/2.3.0/entrypoint.sh`

* Downgrade to previous commit

As previous commit has been tested more and is confirmed to support
Gemma2 and DataGemma models

* Rename `2.3.0` to `sha-2788d41`

* Rename and udpate to TGI 2.3.0

* Update `Dockerfile` to be aligned wtih TGI 2.3.0

Main update w.r.t. the previous `Dockefile` within this repository is
that now Python 3.11 is used instead of Python 3.10; and the SHA that
this `Dockerfile` was using before the release was still using Python
3.10

* Update `README.md` references to TGI (2-2 -> 2-3)

* Add missing `package` in `doc-pr-upload.yml`

* Use URLs instead of rel paths in `available.mdx`

* Update title to `Available DLCs on Google Cloud`

* Update references to TGI 2.3.0

- Use `py311` tag instead of `py310` as now uses Python 3.11
- Use `cu124` tag instead of `cu121` as now uses CUDA 12.4

* Delete 2.3.0 container in favour of 2.3.1 (WIP)

* Add `containers/tgi/gpu/2.3.1/Dockerfile`

* Add `containers/tgi/gpu/2.3.1/entrypoint.sh`

* Update `containers/tgi/gpu/2.3.1/Dockerfile`

* Update references to latest TGI container

- Updated `containers/tgi/README.md`
- Updated `docs/source/containers/available.mdx`
- Updated `README.md`
  • Loading branch information
alvarobartt authored Oct 7, 2024
1 parent 7c0716e commit 9ae5e7d
Show file tree
Hide file tree
Showing 6 changed files with 342 additions and 10 deletions.
1 change: 1 addition & 0 deletions .github/workflows/doc-pr-upload.yml
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@ jobs:
build:
uses: huggingface/doc-builder/.github/workflows/upload_pr_documentation.yml@main
with:
package: Google-Cloud-Containers
package_name: google-cloud
secrets:
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
Expand Down
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ The [Google-Cloud-Containers](https://github.com/huggingface/Google-Cloud-Contai

| Container URI | Path | Framework | Type | Accelerator |
| --------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------- | --------- | --------- | ----------- |
| us-docker.pkg.dev/deeplearning-platform-release/gcr.io/huggingface-text-generation-inference-cu121.2-2.ubuntu2204.py310 | [text-generation-inference-gpu.2.2.0](./containers/tgi/gpu/2.2.0/Dockerfile) | TGI | Inference | GPU |
| us-docker.pkg.dev/deeplearning-platform-release/gcr.io/huggingface-text-generation-inference-cu124.2-3.ubuntu2204.py311 | [text-generation-inference-gpu.2.3.1](./containers/tgi/gpu/2.3.1/Dockerfile) | TGI | Inference | GPU |
| us-docker.pkg.dev/deeplearning-platform-release/gcr.io/huggingface-text-embeddings-inference-cu122.1-4.ubuntu2204 | [text-embeddings-inference-gpu.1.4.0](./containers/tei/gpu/1.4.0/Dockerfile) | TEI | Inference | GPU |
| us-docker.pkg.dev/deeplearning-platform-release/gcr.io/huggingface-text-embeddings-inference-cpu.1-4 | [text-embeddings-inference-cpu.1.4.0](./containers/tei/cpu/1.4.0/Dockerfile) | TEI | Inference | CPU |
| us-docker.pkg.dev/deeplearning-platform-release/gcr.io/huggingface-pytorch-training-cu121.2-3.transformers.4-42.ubuntu2204.py310 | [huggingface-pytorch-training-gpu.2.3.0.transformers.4.42.3.py310](./containers/pytorch/training/gpu/2.3.0/transformers/4.42.3/py310/Dockerfile) | PyTorch | Training | GPU |
Expand Down
4 changes: 2 additions & 2 deletions containers/tgi/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@ docker run --gpus all -ti --shm-size 1g -p 8080:8080 \
-e HF_TOKEN=$(cat ~/.cache/huggingface/token) \
-e MAX_INPUT_LENGTH=4000 \
-e MAX_TOTAL_TOKENS=4096 \
us-docker.pkg.dev/deeplearning-platform-release/gcr.io/huggingface-text-generation-inference-cu121.2-2.ubuntu2204.py310
us-docker.pkg.dev/deeplearning-platform-release/gcr.io/huggingface-text-generation-inference-cu124.2-3.ubuntu2204.py311
```

### Test
Expand Down Expand Up @@ -111,5 +111,5 @@ curl 0.0.0.0:8080/generate \
In order to build TGI Docker container, you will need an instance with at least 4 NVIDIA GPUs available with at least 24 GiB of VRAM each, since TGI needs to build and compile the kernels required for the optimized inference. Also note that the build process may take ~30 minutes to complete, depending on the instance's specifications.

```bash
docker build -t us-docker.pkg.dev/deeplearning-platform-release/gcr.io/huggingface-text-generation-inference-cu121.2-2.ubuntu2204.py310 -f containers/tgi/gpu/2.2.0/Dockerfile .
docker build -t us-docker.pkg.dev/deeplearning-platform-release/gcr.io/huggingface-text-generation-inference-cu124.2-3.ubuntu2204.py311 -f containers/tgi/gpu/2.3.1/Dockerfile .
```
301 changes: 301 additions & 0 deletions containers/tgi/gpu/2.3.1/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,301 @@
# Fetch and extract the TGI sources
FROM alpine AS tgi
RUN mkdir -p /tgi
ADD https://github.com/huggingface/text-generation-inference/archive/refs/tags/v2.3.1.tar.gz /tgi/sources.tar.gz
RUN tar -C /tgi -xf /tgi/sources.tar.gz --strip-components=1

# Rust builder
FROM lukemathwalker/cargo-chef:latest-rust-1.80 AS chef
WORKDIR /usr/src

ARG CARGO_REGISTRIES_CRATES_IO_PROTOCOL=sparse

FROM chef AS planner
COPY --from=tgi /tgi/Cargo.lock Cargo.lock
COPY --from=tgi /tgi/Cargo.toml Cargo.toml
COPY --from=tgi /tgi/rust-toolchain.toml rust-toolchain.toml
COPY --from=tgi /tgi/proto proto
COPY --from=tgi /tgi/benchmark benchmark
COPY --from=tgi /tgi/router router
COPY --from=tgi /tgi/backends backends
COPY --from=tgi /tgi/launcher launcher

RUN cargo chef prepare --recipe-path recipe.json

FROM chef AS builder

RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
python3.11-dev
RUN PROTOC_ZIP=protoc-21.12-linux-x86_64.zip && \
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP && \
unzip -o $PROTOC_ZIP -d /usr/local bin/protoc && \
unzip -o $PROTOC_ZIP -d /usr/local 'include/*' && \
rm -f $PROTOC_ZIP

COPY --from=planner /usr/src/recipe.json recipe.json
RUN cargo chef cook --profile release-opt --recipe-path recipe.json

COPY --from=tgi /tgi/Cargo.toml Cargo.toml
COPY --from=tgi /tgi/rust-toolchain.toml rust-toolchain.toml
COPY --from=tgi /tgi/proto proto
COPY --from=tgi /tgi/benchmark benchmark
COPY --from=tgi /tgi/router router
COPY --from=tgi /tgi/backends backends
COPY --from=tgi /tgi/launcher launcher
RUN cargo build --profile release-opt --features google

# Python builder
# Adapted from: https://github.com/pytorch/pytorch/blob/master/Dockerfile
FROM nvidia/cuda:12.4.1-devel-ubuntu22.04 AS pytorch-install

# NOTE: When updating PyTorch version, beware to remove `pip install nvidia-nccl-cu12==2.22.3` below in the Dockerfile. Context: https://github.com/huggingface/text-generation-inference/pull/2099
ARG PYTORCH_VERSION=2.4.0

ARG PYTHON_VERSION=3.11
# Keep in sync with `server/pyproject.toml
ARG CUDA_VERSION=12.4
ARG MAMBA_VERSION=24.3.0-0
ARG CUDA_CHANNEL=nvidia
ARG INSTALL_CHANNEL=pytorch
# Automatically set by buildx
ARG TARGETPLATFORM

ENV PATH /opt/conda/bin:$PATH

RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
build-essential \
ca-certificates \
ccache \
curl \
git && \
rm -rf /var/lib/apt/lists/*

# Install conda
# translating Docker's TARGETPLATFORM into mamba arches
RUN case ${TARGETPLATFORM} in \
"linux/arm64") MAMBA_ARCH=aarch64 ;; \
*) MAMBA_ARCH=x86_64 ;; \
esac && \
curl -fsSL -v -o ~/mambaforge.sh -O "https://github.com/conda-forge/miniforge/releases/download/${MAMBA_VERSION}/Mambaforge-${MAMBA_VERSION}-Linux-${MAMBA_ARCH}.sh"
RUN chmod +x ~/mambaforge.sh && \
bash ~/mambaforge.sh -b -p /opt/conda && \
rm ~/mambaforge.sh

# Install pytorch
# On arm64 we exit with an error code
RUN case ${TARGETPLATFORM} in \
"linux/arm64") exit 1 ;; \
*) /opt/conda/bin/conda update -y conda && \
/opt/conda/bin/conda install -c "${INSTALL_CHANNEL}" -c "${CUDA_CHANNEL}" -y "python=${PYTHON_VERSION}" "pytorch=$PYTORCH_VERSION" "pytorch-cuda=$(echo $CUDA_VERSION | cut -d'.' -f 1-2)" ;; \
esac && \
/opt/conda/bin/conda clean -ya

# CUDA kernels builder image
FROM pytorch-install AS kernel-builder

ARG MAX_JOBS=4
ENV TORCH_CUDA_ARCH_LIST="8.0;8.6;9.0+PTX"

RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
ninja-build cmake \
&& rm -rf /var/lib/apt/lists/*

# Build Flash Attention CUDA kernels
FROM kernel-builder AS flash-att-builder

WORKDIR /usr/src

COPY --from=tgi /tgi/server/Makefile-flash-att Makefile

# Build specific version of flash attention
RUN make build-flash-attention

# Build Flash Attention v2 CUDA kernels
FROM kernel-builder AS flash-att-v2-builder

WORKDIR /usr/src

COPY --from=tgi /tgi/server/Makefile-flash-att-v2 Makefile

# Build specific version of flash attention v2
RUN make build-flash-attention-v2-cuda

# Build Transformers exllama kernels
FROM kernel-builder AS exllama-kernels-builder
WORKDIR /usr/src
COPY --from=tgi /tgi/server/exllama_kernels/ .

RUN python setup.py build

# Build Transformers exllama kernels
FROM kernel-builder AS exllamav2-kernels-builder
WORKDIR /usr/src
COPY --from=tgi /tgi/server/Makefile-exllamav2/ Makefile

# Build specific version of transformers
RUN make build-exllamav2

# Build Transformers awq kernels
FROM kernel-builder AS awq-kernels-builder
WORKDIR /usr/src
COPY --from=tgi /tgi/server/Makefile-awq Makefile
# Build specific version of transformers
RUN make build-awq

# Build eetq kernels
FROM kernel-builder AS eetq-kernels-builder
WORKDIR /usr/src
COPY --from=tgi /tgi/server/Makefile-eetq Makefile
# Build specific version of transformers
RUN make build-eetq

# Build Lorax Punica kernels
FROM kernel-builder AS lorax-punica-builder
WORKDIR /usr/src
COPY --from=tgi /tgi/server/Makefile-lorax-punica Makefile
# Build specific version of transformers
RUN TORCH_CUDA_ARCH_LIST="8.0;8.6+PTX" make build-lorax-punica

# Build Transformers CUDA kernels
FROM kernel-builder AS custom-kernels-builder
WORKDIR /usr/src
COPY --from=tgi /tgi/server/custom_kernels/ .
# Build specific version of transformers
RUN python setup.py build

# Build FBGEMM CUDA kernels
FROM kernel-builder AS fbgemm-builder

WORKDIR /usr/src

COPY --from=tgi /tgi/server/Makefile-fbgemm Makefile

RUN make build-fbgemm

# Build vllm CUDA kernels
FROM kernel-builder AS vllm-builder

WORKDIR /usr/src

ENV TORCH_CUDA_ARCH_LIST="7.0 7.5 8.0 8.6 8.9 9.0+PTX"

COPY --from=tgi /tgi/server/Makefile-vllm Makefile

# Build specific version of vllm
RUN make build-vllm-cuda

# Build mamba kernels
FROM kernel-builder AS mamba-builder
WORKDIR /usr/src
COPY --from=tgi /tgi/server/Makefile-selective-scan Makefile
RUN make build-all

# Build flashinfer
FROM kernel-builder AS flashinfer-builder
WORKDIR /usr/src
COPY --from=tgi /tgi/server/Makefile-flashinfer Makefile
RUN make install-flashinfer

# Text Generation Inference base image
FROM nvidia/cuda:12.1.0-base-ubuntu22.04 AS base

# Conda env
ENV PATH=/opt/conda/bin:$PATH \
CONDA_PREFIX=/opt/conda

# Text Generation Inference base env
ENV HF_HOME=/tmp \
HF_HUB_ENABLE_HF_TRANSFER=1 \
PORT=8080

WORKDIR /usr/src

RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
libssl-dev \
ca-certificates \
make \
curl \
git \
&& rm -rf /var/lib/apt/lists/*

# Copy conda with PyTorch installed
COPY --from=pytorch-install /opt/conda /opt/conda

# Copy build artifacts from flash attention builder
COPY --from=flash-att-builder /usr/src/flash-attention/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages
COPY --from=flash-att-builder /usr/src/flash-attention/csrc/layer_norm/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages
COPY --from=flash-att-builder /usr/src/flash-attention/csrc/rotary/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages

# Copy build artifacts from flash attention v2 builder
COPY --from=flash-att-v2-builder /opt/conda/lib/python3.11/site-packages/flash_attn_2_cuda.cpython-311-x86_64-linux-gnu.so /opt/conda/lib/python3.11/site-packages

# Copy build artifacts from custom kernels builder
COPY --from=custom-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages
# Copy build artifacts from exllama kernels builder
COPY --from=exllama-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages
# Copy build artifacts from exllamav2 kernels builder
COPY --from=exllamav2-kernels-builder /usr/src/exllamav2/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages
# Copy build artifacts from awq kernels builder
COPY --from=awq-kernels-builder /usr/src/llm-awq/awq/kernels/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages
# Copy build artifacts from eetq kernels builder
COPY --from=eetq-kernels-builder /usr/src/eetq/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages
# Copy build artifacts from lorax punica kernels builder
COPY --from=lorax-punica-builder /usr/src/lorax-punica/server/punica_kernels/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages
# Copy build artifacts from fbgemm builder
COPY --from=fbgemm-builder /usr/src/fbgemm/fbgemm_gpu/_skbuild/linux-x86_64-3.11/cmake-install /opt/conda/lib/python3.11/site-packages
# Copy build artifacts from vllm builder
COPY --from=vllm-builder /usr/src/vllm/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages
# Copy build artifacts from mamba builder
COPY --from=mamba-builder /usr/src/mamba/build/lib.linux-x86_64-cpython-311/ /opt/conda/lib/python3.11/site-packages
COPY --from=mamba-builder /usr/src/causal-conv1d/build/lib.linux-x86_64-cpython-311/ /opt/conda/lib/python3.11/site-packages
COPY --from=flashinfer-builder /opt/conda/lib/python3.11/site-packages/flashinfer/ /opt/conda/lib/python3.11/site-packages/flashinfer/

# Install flash-attention dependencies
RUN pip install einops --no-cache-dir

# Install server
COPY --from=tgi /tgi/proto proto
COPY --from=tgi /tgi/server server
COPY --from=tgi /tgi/server/Makefile server/Makefile
RUN cd server && \
make gen-server && \
pip install -r requirements_cuda.txt && \
pip install ".[bnb, accelerate, marlin, moe, quantize, peft, outlines]" --no-cache-dir && \
pip install nvidia-nccl-cu12==2.22.3

ENV LD_PRELOAD=/opt/conda/lib/python3.11/site-packages/nvidia/nccl/lib/libnccl.so.2
# Required to find libpython within the rust binaries
ENV LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/opt/conda/lib/"
# This is needed because exl2 tries to load flash-attn
# And fails with our builds.
ENV EXLLAMA_NO_FLASH_ATTN=1

# Deps before the binaries
# The binaries change on every build given we burn the SHA into them
# The deps change less often.
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
build-essential \
g++ \
&& rm -rf /var/lib/apt/lists/*

# Install benchmarker
COPY --from=builder /usr/src/target/release-opt/text-generation-benchmark /usr/local/bin/text-generation-benchmark
# Install router
COPY --from=builder /usr/src/target/release-opt/text-generation-router /usr/local/bin/text-generation-router
# Install launcher
COPY --from=builder /usr/src/target/release-opt/text-generation-launcher /usr/local/bin/text-generation-launcher

# Final image
FROM base

# Install Google CLI single command
RUN echo "deb [signed-by=/usr/share/keyrings/cloud.google.gpg] https://packages.cloud.google.com/apt cloud-sdk main" \
| tee -a /etc/apt/sources.list.d/google-cloud-sdk.list && \
curl https://packages.cloud.google.com/apt/doc/apt-key.gpg \
| apt-key --keyring /usr/share/keyrings/cloud.google.gpg add - && \
apt-get update -y && \
apt-get install google-cloud-sdk -y

# COPY custom entrypoint for Google
COPY --chmod=775 containers/tgi/gpu/2.3.1/entrypoint.sh entrypoint.sh
ENTRYPOINT ["./entrypoint.sh"]
30 changes: 30 additions & 0 deletions containers/tgi/gpu/2.3.1/entrypoint.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
#!/bin/bash

# Check if MODEL_ID starts with "gcs://"
if [[ $AIP_STORAGE_URI == gs://* ]]; then
echo "AIP_STORAGE_URI set and starts with 'gs://', proceeding to download from GCS."
echo "AIP_STORAGE_URI: $AIP_STORAGE_URI"

# Define the target directory
TARGET_DIR="/tmp/model"
mkdir -p "$TARGET_DIR"

# Use gsutil to copy the content from GCS to the target directory
echo "Running: gcloud storage storage cp $AIP_STORAGE_URI/* $TARGET_DIR --recursive"
gcloud storage cp "$AIP_STORAGE_URI/*" "$TARGET_DIR" --recursive

# Check if gsutil command was successful
if [ $? -eq 0 ]; then
echo "Model downloaded successfully to ${TARGET_DIR}."
# Update MODEL_ID to point to the local directory
echo "Updating MODEL_ID to point to the local directory."
export MODEL_ID="$TARGET_DIR"
else
echo "Failed to download model from GCS."
exit 1
fi
fi

ldconfig 2>/dev/null || echo 'unable to refresh ld cache, not a big deal in most cases'

text-generation-launcher $@
Loading

0 comments on commit 9ae5e7d

Please sign in to comment.