Skip to content

Commit

Permalink
Add containers/tgi/gpu/2.4.0/Dockerfile (#118)
Browse files Browse the repository at this point in the history
* Add `containers/tgi/gpu/2.4.0/entrypoint.sh`

Adding `exec` implies that the `text-generation-launcher` command in the
`entrypoint.sh` becomes the process with PID 1, allowing it to receive
signals directly; meaning that it can be gracefully shut down.

Co-authored-by: Raphael Glon <[email protected]>

* Add `containers/tgi/gpu/2.4.0/Dockerfile` starting image

* Update `containers/tgi/gpu/2.4.0/Dockerfile`

---------

Co-authored-by: Raphael Glon <[email protected]>
  • Loading branch information
alvarobartt and oOraph authored Oct 30, 2024
1 parent afcb6ad commit fb1e01d
Show file tree
Hide file tree
Showing 2 changed files with 309 additions and 0 deletions.
279 changes: 279 additions & 0 deletions containers/tgi/gpu/2.4.0/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,279 @@
# Fetch and extract the TGI sources
FROM alpine AS tgi
RUN mkdir -p /tgi
ADD https://github.com/huggingface/text-generation-inference/archive/refs/tags/v2.4.0.tar.gz /tgi/sources.tar.gz
RUN tar -C /tgi -xf /tgi/sources.tar.gz --strip-components=1

# Rust builder
FROM lukemathwalker/cargo-chef:latest-rust-1.80.1 AS chef
WORKDIR /usr/src

ARG CARGO_REGISTRIES_CRATES_IO_PROTOCOL=sparse

FROM chef AS planner
COPY --from=tgi /tgi/Cargo.lock Cargo.lock
COPY --from=tgi /tgi/Cargo.toml Cargo.toml
COPY --from=tgi /tgi/rust-toolchain.toml rust-toolchain.toml
COPY --from=tgi /tgi/proto proto
COPY --from=tgi /tgi/benchmark benchmark
COPY --from=tgi /tgi/router router
COPY --from=tgi /tgi/backends backends
COPY --from=tgi /tgi/launcher launcher

RUN cargo chef prepare --recipe-path recipe.json

FROM chef AS builder

RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
python3.11-dev
RUN PROTOC_ZIP=protoc-21.12-linux-x86_64.zip && \
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP && \
unzip -o $PROTOC_ZIP -d /usr/local bin/protoc && \
unzip -o $PROTOC_ZIP -d /usr/local 'include/*' && \
rm -f $PROTOC_ZIP

COPY --from=planner /usr/src/recipe.json recipe.json
RUN cargo chef cook --profile release-opt --recipe-path recipe.json

COPY --from=tgi /tgi/Cargo.lock Cargo.lock
COPY --from=tgi /tgi/Cargo.toml Cargo.toml
COPY --from=tgi /tgi/rust-toolchain.toml rust-toolchain.toml
COPY --from=tgi /tgi/proto proto
COPY --from=tgi /tgi/benchmark benchmark
COPY --from=tgi /tgi/router router
COPY --from=tgi /tgi/backends backends
COPY --from=tgi /tgi/launcher launcher
RUN cargo build --profile release-opt --features google --frozen

# Python builder
# Adapted from: https://github.com/pytorch/pytorch/blob/master/Dockerfile
FROM nvidia/cuda:12.4.1-devel-ubuntu22.04 AS pytorch-install

# NOTE: When updating PyTorch version, beware to remove `pip install nvidia-nccl-cu12==2.22.3` below in the Dockerfile. Context: https://github.com/huggingface/text-generation-inference/pull/2099
ARG PYTORCH_VERSION=2.4.0

ARG PYTHON_VERSION=3.11
# Keep in sync with `server/pyproject.toml
ARG CUDA_VERSION=12.4
ARG MAMBA_VERSION=24.3.0-0
ARG CUDA_CHANNEL=nvidia
ARG INSTALL_CHANNEL=pytorch
# Automatically set by buildx
ARG TARGETPLATFORM

ENV PATH /opt/conda/bin:$PATH

RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
build-essential \
ca-certificates \
ccache \
curl \
git && \
rm -rf /var/lib/apt/lists/*

# Install conda
# translating Docker's TARGETPLATFORM into mamba arches
RUN case ${TARGETPLATFORM} in \
"linux/arm64") MAMBA_ARCH=aarch64 ;; \
*) MAMBA_ARCH=x86_64 ;; \
esac && \
curl -fsSL -v -o ~/mambaforge.sh -O "https://github.com/conda-forge/miniforge/releases/download/${MAMBA_VERSION}/Mambaforge-${MAMBA_VERSION}-Linux-${MAMBA_ARCH}.sh"
RUN chmod +x ~/mambaforge.sh && \
bash ~/mambaforge.sh -b -p /opt/conda && \
rm ~/mambaforge.sh

# Install pytorch
# On arm64 we exit with an error code
RUN case ${TARGETPLATFORM} in \
"linux/arm64") exit 1 ;; \
*) /opt/conda/bin/conda update -y conda && \
/opt/conda/bin/conda install -c "${INSTALL_CHANNEL}" -c "${CUDA_CHANNEL}" -y "python=${PYTHON_VERSION}" "pytorch=$PYTORCH_VERSION" "pytorch-cuda=$(echo $CUDA_VERSION | cut -d'.' -f 1-2)" ;; \
esac && \
/opt/conda/bin/conda clean -ya

# CUDA kernels builder image
FROM pytorch-install AS kernel-builder

ARG MAX_JOBS=4
ENV TORCH_CUDA_ARCH_LIST="8.0;8.6;9.0+PTX"

RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
ninja-build cmake \
&& rm -rf /var/lib/apt/lists/*

# Build Flash Attention CUDA kernels
FROM kernel-builder AS flash-att-builder
WORKDIR /usr/src
COPY --from=tgi /tgi/server/Makefile-flash-att Makefile
# Build specific version of flash attention
RUN make build-flash-attention

# Build Flash Attention v2 CUDA kernels
FROM kernel-builder AS flash-att-v2-builder
WORKDIR /usr/src
COPY --from=tgi /tgi/server/Makefile-flash-att-v2 Makefile
# Build specific version of flash attention v2
RUN make build-flash-attention-v2-cuda

# Build Transformers exllama kernels
FROM kernel-builder AS exllama-kernels-builder
WORKDIR /usr/src
COPY --from=tgi /tgi/server/exllama_kernels/ .
RUN python setup.py build

# Build Transformers exllama kernels
FROM kernel-builder AS exllamav2-kernels-builder
WORKDIR /usr/src
COPY --from=tgi /tgi/server/Makefile-exllamav2/ Makefile
# Build specific version of transformers
RUN make build-exllamav2

# Build Transformers awq kernels
FROM kernel-builder AS awq-kernels-builder
WORKDIR /usr/src
COPY --from=tgi /tgi/server/Makefile-awq Makefile
# Build specific version of transformers
RUN make build-awq

# Build eetq kernels
FROM kernel-builder AS eetq-kernels-builder
WORKDIR /usr/src
COPY --from=tgi /tgi/server/Makefile-eetq Makefile
# Build specific version of transformers
RUN make build-eetq

# Build Lorax Punica kernels
FROM kernel-builder AS lorax-punica-builder
WORKDIR /usr/src
COPY --from=tgi /tgi/server/Makefile-lorax-punica Makefile
# Build specific version of transformers
RUN TORCH_CUDA_ARCH_LIST="8.0;8.6+PTX" make build-lorax-punica

# Build Transformers CUDA kernels
FROM kernel-builder AS custom-kernels-builder
WORKDIR /usr/src
COPY --from=tgi /tgi/server/custom_kernels/ .
# Build specific version of transformers
RUN python setup.py build

# Build vllm CUDA kernels
FROM kernel-builder AS vllm-builder
WORKDIR /usr/src
ENV TORCH_CUDA_ARCH_LIST="7.0 7.5 8.0 8.6 8.9 9.0+PTX"
COPY --from=tgi /tgi/server/Makefile-vllm Makefile
# Build specific version of vllm
RUN make build-vllm-cuda

# Build mamba kernels
FROM kernel-builder AS mamba-builder
WORKDIR /usr/src
COPY --from=tgi /tgi/server/Makefile-selective-scan Makefile
RUN make build-all

# Build flashinfer
FROM kernel-builder AS flashinfer-builder
WORKDIR /usr/src
COPY --from=tgi /tgi/server/Makefile-flashinfer Makefile
RUN make install-flashinfer

# Text Generation Inference base image
FROM nvidia/cuda:12.1.0-base-ubuntu22.04 AS base

# Conda env
ENV PATH=/opt/conda/bin:$PATH \
CONDA_PREFIX=/opt/conda

# Text Generation Inference base env
ENV HF_HOME=/tmp \
HF_HUB_ENABLE_HF_TRANSFER=1 \
PORT=8080

WORKDIR /usr/src

RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
libssl-dev \
ca-certificates \
make \
curl \
git \
&& rm -rf /var/lib/apt/lists/*

# Copy conda with PyTorch installed
COPY --from=pytorch-install /opt/conda /opt/conda

# Copy build artifacts from flash attention builder
COPY --from=flash-att-builder /usr/src/flash-attention/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages
COPY --from=flash-att-builder /usr/src/flash-attention/csrc/layer_norm/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages
COPY --from=flash-att-builder /usr/src/flash-attention/csrc/rotary/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages

# Copy build artifacts from flash attention v2 builder
COPY --from=flash-att-v2-builder /opt/conda/lib/python3.11/site-packages/flash_attn_2_cuda.cpython-311-x86_64-linux-gnu.so /opt/conda/lib/python3.11/site-packages

# Copy build artifacts from custom kernels builder
COPY --from=custom-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages
# Copy build artifacts from exllama kernels builder
COPY --from=exllama-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages
# Copy build artifacts from exllamav2 kernels builder
COPY --from=exllamav2-kernels-builder /usr/src/exllamav2/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages
# Copy build artifacts from awq kernels builder
COPY --from=awq-kernels-builder /usr/src/llm-awq/awq/kernels/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages
# Copy build artifacts from eetq kernels builder
COPY --from=eetq-kernels-builder /usr/src/eetq/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages
# Copy build artifacts from lorax punica kernels builder
COPY --from=lorax-punica-builder /usr/src/lorax-punica/server/punica_kernels/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages
# Copy build artifacts from vllm builder
COPY --from=vllm-builder /usr/src/vllm/build/lib.linux-x86_64-cpython-311 /opt/conda/lib/python3.11/site-packages
# Copy build artifacts from mamba builder
COPY --from=mamba-builder /usr/src/mamba/build/lib.linux-x86_64-cpython-311/ /opt/conda/lib/python3.11/site-packages
COPY --from=mamba-builder /usr/src/causal-conv1d/build/lib.linux-x86_64-cpython-311/ /opt/conda/lib/python3.11/site-packages
COPY --from=flashinfer-builder /opt/conda/lib/python3.11/site-packages/flashinfer/ /opt/conda/lib/python3.11/site-packages/flashinfer/

# Install flash-attention dependencies
RUN pip install einops --no-cache-dir

# Install server
COPY --from=tgi /tgi/proto proto
COPY --from=tgi /tgi/server server
COPY --from=tgi /tgi/server/Makefile server/Makefile
RUN cd server && \
make gen-server && \
pip install -r requirements_cuda.txt && \
pip install ".[bnb, accelerate, marlin, moe, quantize, peft, outlines]" --no-cache-dir && \
pip install nvidia-nccl-cu12==2.22.3

ENV LD_PRELOAD=/opt/conda/lib/python3.11/site-packages/nvidia/nccl/lib/libnccl.so.2
# Required to find libpython within the rust binaries
ENV LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/opt/conda/lib/"
# This is needed because exl2 tries to load flash-attn
# And fails with our builds.
ENV EXLLAMA_NO_FLASH_ATTN=1

# Deps before the binaries
# The binaries change on every build given we burn the SHA into them
# The deps change less often.
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
build-essential \
g++ \
&& rm -rf /var/lib/apt/lists/*

# Install benchmarker
COPY --from=builder /usr/src/target/release-opt/text-generation-benchmark /usr/local/bin/text-generation-benchmark
# Install router
COPY --from=builder /usr/src/target/release-opt/text-generation-router /usr/local/bin/text-generation-router
# Install launcher
COPY --from=builder /usr/src/target/release-opt/text-generation-launcher /usr/local/bin/text-generation-launcher

# Final image
FROM base

# Install Google CLI single command
RUN echo "deb [signed-by=/usr/share/keyrings/cloud.google.gpg] https://packages.cloud.google.com/apt cloud-sdk main" \
| tee -a /etc/apt/sources.list.d/google-cloud-sdk.list && \
curl https://packages.cloud.google.com/apt/doc/apt-key.gpg \
| apt-key --keyring /usr/share/keyrings/cloud.google.gpg add - && \
apt-get update -y && \
apt-get install google-cloud-sdk -y

# COPY custom entrypoint for Google
COPY --chmod=775 containers/tgi/gpu/2.4.0/entrypoint.sh entrypoint.sh
ENTRYPOINT ["./entrypoint.sh"]
30 changes: 30 additions & 0 deletions containers/tgi/gpu/2.4.0/entrypoint.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
#!/bin/bash

# Check if MODEL_ID starts with "gcs://"
if [[ $AIP_STORAGE_URI == gs://* ]]; then
echo "AIP_STORAGE_URI set and starts with 'gs://', proceeding to download from GCS."
echo "AIP_STORAGE_URI: $AIP_STORAGE_URI"

# Define the target directory
TARGET_DIR="/tmp/model"
mkdir -p "$TARGET_DIR"

# Use gsutil to copy the content from GCS to the target directory
echo "Running: gcloud storage storage cp $AIP_STORAGE_URI/* $TARGET_DIR --recursive"
gcloud storage cp "$AIP_STORAGE_URI/*" "$TARGET_DIR" --recursive

# Check if gsutil command was successful
if [ $? -eq 0 ]; then
echo "Model downloaded successfully to ${TARGET_DIR}."
# Update MODEL_ID to point to the local directory
echo "Updating MODEL_ID to point to the local directory."
export MODEL_ID="$TARGET_DIR"
else
echo "Failed to download model from GCS."
exit 1
fi
fi

ldconfig 2>/dev/null || echo 'unable to refresh ld cache, not a big deal in most cases'

exec text-generation-launcher $@

0 comments on commit fb1e01d

Please sign in to comment.