-
Notifications
You must be signed in to change notification settings - Fork 1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
461e8c1
commit 46115fa
Showing
4 changed files
with
699 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
# candle-helium: 2b LLM with CC-BY licensed weights | ||
|
||
- [Model card](https://huggingface.co/kyutai/helium-1-preview) on the HuggingFace Hub. | ||
|
||
## Running the example | ||
|
||
```bash | ||
$ cargo run --example helium --release --features cuda -- --prompt 'Write helloworld code in Rust' --sample-len 150 | ||
``` | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,292 @@ | ||
#[cfg(feature = "mkl")] | ||
extern crate intel_mkl_src; | ||
|
||
#[cfg(feature = "accelerate")] | ||
extern crate accelerate_src; | ||
|
||
use anyhow::{Error as E, Result}; | ||
use clap::Parser; | ||
|
||
use candle_transformers::models::helium::{Config, Model}; | ||
|
||
use candle::{DType, Device, Tensor}; | ||
use candle_examples::token_output_stream::TokenOutputStream; | ||
use candle_nn::VarBuilder; | ||
use candle_transformers::generation::{LogitsProcessor, Sampling}; | ||
use hf_hub::{api::sync::Api, Repo, RepoType}; | ||
use tokenizers::Tokenizer; | ||
|
||
struct TextGeneration { | ||
model: Model, | ||
device: Device, | ||
tokenizer: TokenOutputStream, | ||
logits_processor: LogitsProcessor, | ||
repeat_penalty: f32, | ||
repeat_last_n: usize, | ||
config: Config, | ||
} | ||
|
||
impl TextGeneration { | ||
#[allow(clippy::too_many_arguments)] | ||
fn new( | ||
model: Model, | ||
tokenizer: Tokenizer, | ||
seed: u64, | ||
temp: Option<f64>, | ||
top_p: Option<f64>, | ||
top_k: Option<usize>, | ||
repeat_penalty: f32, | ||
repeat_last_n: usize, | ||
config: Config, | ||
device: &Device, | ||
) -> Self { | ||
let logits_processor = { | ||
let temperature = temp.unwrap_or(0.); | ||
let sampling = if temperature <= 0. { | ||
Sampling::ArgMax | ||
} else { | ||
match (top_k, top_p) { | ||
(None, None) => Sampling::All { temperature }, | ||
(Some(k), None) => Sampling::TopK { k, temperature }, | ||
(None, Some(p)) => Sampling::TopP { p, temperature }, | ||
(Some(k), Some(p)) => Sampling::TopKThenTopP { k, p, temperature }, | ||
} | ||
}; | ||
LogitsProcessor::from_sampling(seed, sampling) | ||
}; | ||
|
||
Self { | ||
model, | ||
tokenizer: TokenOutputStream::new(tokenizer), | ||
logits_processor, | ||
repeat_penalty, | ||
repeat_last_n, | ||
device: device.clone(), | ||
config, | ||
} | ||
} | ||
|
||
fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> { | ||
use std::io::Write; | ||
self.tokenizer.clear(); | ||
let mut tokens = self | ||
.tokenizer | ||
.tokenizer() | ||
.encode(prompt, true) | ||
.map_err(E::msg)? | ||
.get_ids() | ||
.to_vec(); | ||
for &t in tokens.iter() { | ||
if let Some(t) = self.tokenizer.next_token(t)? { | ||
print!("{t}") | ||
} | ||
} | ||
std::io::stdout().flush()?; | ||
|
||
let mut generated_tokens = 0usize; | ||
let start_gen = std::time::Instant::now(); | ||
for index in 0..sample_len { | ||
let context_size = if index > 0 { 1 } else { tokens.len() }; | ||
let start_pos = tokens.len().saturating_sub(context_size); | ||
let ctxt = &tokens[start_pos..]; | ||
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?; | ||
let logits = self.model.forward(&input, start_pos)?; | ||
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?; | ||
let logits = if self.repeat_penalty == 1. { | ||
logits | ||
} else { | ||
let start_at = tokens.len().saturating_sub(self.repeat_last_n); | ||
candle_transformers::utils::apply_repeat_penalty( | ||
&logits, | ||
self.repeat_penalty, | ||
&tokens[start_at..], | ||
)? | ||
}; | ||
|
||
let next_token = self.logits_processor.sample(&logits)?; | ||
tokens.push(next_token); | ||
generated_tokens += 1; | ||
if next_token == self.config.bos_token_id || next_token == self.config.eos_token_id { | ||
break; | ||
} | ||
if let Some(t) = self.tokenizer.next_token(next_token)? { | ||
print!("{t}"); | ||
std::io::stdout().flush()?; | ||
} | ||
} | ||
let dt = start_gen.elapsed(); | ||
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? { | ||
print!("{rest}"); | ||
} | ||
std::io::stdout().flush()?; | ||
println!( | ||
"\n{generated_tokens} tokens generated ({:.2} token/s)", | ||
generated_tokens as f64 / dt.as_secs_f64(), | ||
); | ||
Ok(()) | ||
} | ||
} | ||
|
||
#[derive(Clone, Debug, Copy, PartialEq, Eq, clap::ValueEnum)] | ||
enum Which { | ||
#[value(name = "v1-preview")] | ||
V1Preview, | ||
} | ||
|
||
#[derive(Parser, Debug)] | ||
#[command(author, version, about, long_about = None)] | ||
struct Args { | ||
/// Run on CPU rather than on GPU. | ||
#[arg(long)] | ||
cpu: bool, | ||
|
||
/// Enable tracing (generates a trace-timestamp.json file). | ||
#[arg(long)] | ||
tracing: bool, | ||
|
||
#[arg(long)] | ||
use_flash_attn: bool, | ||
|
||
#[arg(long)] | ||
prompt: String, | ||
|
||
/// The temperature used to generate samples. | ||
#[arg(long, default_value_t = 0.7)] | ||
temperature: f64, | ||
|
||
/// Nucleus sampling probability cutoff. | ||
#[arg(long)] | ||
top_p: Option<f64>, | ||
|
||
/// Only sample among the top K samples. | ||
#[arg(long)] | ||
top_k: Option<usize>, | ||
|
||
/// The seed to use when generating random samples. | ||
#[arg(long, default_value_t = 299792458)] | ||
seed: u64, | ||
|
||
/// The length of the sample to generate (in tokens). | ||
#[arg(long, short = 'n', default_value_t = 10000)] | ||
sample_len: usize, | ||
|
||
/// The model size to use. | ||
#[arg(long, default_value = "v1-preview")] | ||
which: Which, | ||
|
||
#[arg(long)] | ||
model_id: Option<String>, | ||
|
||
#[arg(long, default_value = "main")] | ||
revision: String, | ||
|
||
#[arg(long)] | ||
tokenizer: Option<String>, | ||
|
||
#[arg(long)] | ||
config: Option<String>, | ||
|
||
#[arg(long)] | ||
weights: Option<String>, | ||
|
||
/// Penalty to be applied for repeating tokens, 1. means no penalty. | ||
#[arg(long, default_value_t = 1.1)] | ||
repeat_penalty: f32, | ||
|
||
/// The context size to consider for the repeat penalty. | ||
#[arg(long, default_value_t = 64)] | ||
repeat_last_n: usize, | ||
} | ||
|
||
fn main() -> Result<()> { | ||
use tracing_chrome::ChromeLayerBuilder; | ||
use tracing_subscriber::prelude::*; | ||
|
||
let args = Args::parse(); | ||
|
||
let _guard = if args.tracing { | ||
let (chrome_layer, guard) = ChromeLayerBuilder::new().build(); | ||
tracing_subscriber::registry().with(chrome_layer).init(); | ||
Some(guard) | ||
} else { | ||
None | ||
}; | ||
println!( | ||
"avx: {}, neon: {}, simd128: {}, f16c: {}", | ||
candle::utils::with_avx(), | ||
candle::utils::with_neon(), | ||
candle::utils::with_simd128(), | ||
candle::utils::with_f16c() | ||
); | ||
println!( | ||
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}", | ||
args.temperature, args.repeat_penalty, args.repeat_last_n | ||
); | ||
|
||
let start = std::time::Instant::now(); | ||
let api = Api::new()?; | ||
let model_id = match args.model_id { | ||
Some(model_id) => model_id, | ||
None => { | ||
let name = match args.which { | ||
Which::V1Preview => "kyutai/helium-1-preview", | ||
}; | ||
name.to_string() | ||
} | ||
}; | ||
let repo = api.repo(Repo::with_revision( | ||
model_id, | ||
RepoType::Model, | ||
args.revision, | ||
)); | ||
let tokenizer_filename = match args.tokenizer { | ||
Some(file) => std::path::PathBuf::from(file), | ||
None => repo.get("tokenizer.json")?, | ||
}; | ||
let filenames = match args.weights { | ||
Some(files) => files | ||
.split(',') | ||
.map(std::path::PathBuf::from) | ||
.collect::<Vec<_>>(), | ||
None => candle_examples::hub_load_safetensors(&repo, "model.safetensors")?, | ||
}; | ||
println!("retrieved the files in {:?}", start.elapsed()); | ||
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?; | ||
|
||
let start = std::time::Instant::now(); | ||
let config: Config = match args.config { | ||
Some(config_file) => serde_json::from_slice(&std::fs::read(config_file)?)?, | ||
None => { | ||
let config_file = repo.get("config.json")?; | ||
serde_json::from_slice(&std::fs::read(config_file)?)? | ||
} | ||
}; | ||
let device = candle_examples::device(args.cpu)?; | ||
let (model, device) = { | ||
let dtype = if device.is_cuda() { | ||
DType::BF16 | ||
} else { | ||
DType::F32 | ||
}; | ||
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? }; | ||
let model = Model::new(&config, vb)?; | ||
(model, device) | ||
}; | ||
|
||
println!("loaded the model in {:?}", start.elapsed()); | ||
|
||
let mut pipeline = TextGeneration::new( | ||
model, | ||
tokenizer, | ||
args.seed, | ||
Some(args.temperature), | ||
args.top_p, | ||
args.top_k, | ||
args.repeat_penalty, | ||
args.repeat_last_n, | ||
config, | ||
&device, | ||
); | ||
pipeline.run(&args.prompt, args.sample_len)?; | ||
Ok(()) | ||
} |
Oops, something went wrong.