Skip to content

Commit

Permalink
Add the helium model.
Browse files Browse the repository at this point in the history
  • Loading branch information
LaurentMazare committed Jan 13, 2025
1 parent 461e8c1 commit 46115fa
Show file tree
Hide file tree
Showing 4 changed files with 699 additions and 0 deletions.
11 changes: 11 additions & 0 deletions candle-examples/examples/helium/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
# candle-helium: 2b LLM with CC-BY licensed weights

- [Model card](https://huggingface.co/kyutai/helium-1-preview) on the HuggingFace Hub.

## Running the example

```bash
$ cargo run --example helium --release --features cuda -- --prompt 'Write helloworld code in Rust' --sample-len 150
```


292 changes: 292 additions & 0 deletions candle-examples/examples/helium/main.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,292 @@
#[cfg(feature = "mkl")]
extern crate intel_mkl_src;

#[cfg(feature = "accelerate")]
extern crate accelerate_src;

use anyhow::{Error as E, Result};
use clap::Parser;

use candle_transformers::models::helium::{Config, Model};

use candle::{DType, Device, Tensor};
use candle_examples::token_output_stream::TokenOutputStream;
use candle_nn::VarBuilder;
use candle_transformers::generation::{LogitsProcessor, Sampling};
use hf_hub::{api::sync::Api, Repo, RepoType};
use tokenizers::Tokenizer;

struct TextGeneration {
model: Model,
device: Device,
tokenizer: TokenOutputStream,
logits_processor: LogitsProcessor,
repeat_penalty: f32,
repeat_last_n: usize,
config: Config,
}

impl TextGeneration {
#[allow(clippy::too_many_arguments)]
fn new(
model: Model,
tokenizer: Tokenizer,
seed: u64,
temp: Option<f64>,
top_p: Option<f64>,
top_k: Option<usize>,
repeat_penalty: f32,
repeat_last_n: usize,
config: Config,
device: &Device,
) -> Self {
let logits_processor = {
let temperature = temp.unwrap_or(0.);
let sampling = if temperature <= 0. {
Sampling::ArgMax
} else {
match (top_k, top_p) {
(None, None) => Sampling::All { temperature },
(Some(k), None) => Sampling::TopK { k, temperature },
(None, Some(p)) => Sampling::TopP { p, temperature },
(Some(k), Some(p)) => Sampling::TopKThenTopP { k, p, temperature },
}
};
LogitsProcessor::from_sampling(seed, sampling)
};

Self {
model,
tokenizer: TokenOutputStream::new(tokenizer),
logits_processor,
repeat_penalty,
repeat_last_n,
device: device.clone(),
config,
}
}

fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
use std::io::Write;
self.tokenizer.clear();
let mut tokens = self
.tokenizer
.tokenizer()
.encode(prompt, true)
.map_err(E::msg)?
.get_ids()
.to_vec();
for &t in tokens.iter() {
if let Some(t) = self.tokenizer.next_token(t)? {
print!("{t}")
}
}
std::io::stdout().flush()?;

let mut generated_tokens = 0usize;
let start_gen = std::time::Instant::now();
for index in 0..sample_len {
let context_size = if index > 0 { 1 } else { tokens.len() };
let start_pos = tokens.len().saturating_sub(context_size);
let ctxt = &tokens[start_pos..];
let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
let logits = self.model.forward(&input, start_pos)?;
let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?;
let logits = if self.repeat_penalty == 1. {
logits
} else {
let start_at = tokens.len().saturating_sub(self.repeat_last_n);
candle_transformers::utils::apply_repeat_penalty(
&logits,
self.repeat_penalty,
&tokens[start_at..],
)?
};

let next_token = self.logits_processor.sample(&logits)?;
tokens.push(next_token);
generated_tokens += 1;
if next_token == self.config.bos_token_id || next_token == self.config.eos_token_id {
break;
}
if let Some(t) = self.tokenizer.next_token(next_token)? {
print!("{t}");
std::io::stdout().flush()?;
}
}
let dt = start_gen.elapsed();
if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? {
print!("{rest}");
}
std::io::stdout().flush()?;
println!(
"\n{generated_tokens} tokens generated ({:.2} token/s)",
generated_tokens as f64 / dt.as_secs_f64(),
);
Ok(())
}
}

#[derive(Clone, Debug, Copy, PartialEq, Eq, clap::ValueEnum)]
enum Which {
#[value(name = "v1-preview")]
V1Preview,
}

#[derive(Parser, Debug)]
#[command(author, version, about, long_about = None)]
struct Args {
/// Run on CPU rather than on GPU.
#[arg(long)]
cpu: bool,

/// Enable tracing (generates a trace-timestamp.json file).
#[arg(long)]
tracing: bool,

#[arg(long)]
use_flash_attn: bool,

#[arg(long)]
prompt: String,

/// The temperature used to generate samples.
#[arg(long, default_value_t = 0.7)]
temperature: f64,

/// Nucleus sampling probability cutoff.
#[arg(long)]
top_p: Option<f64>,

/// Only sample among the top K samples.
#[arg(long)]
top_k: Option<usize>,

/// The seed to use when generating random samples.
#[arg(long, default_value_t = 299792458)]
seed: u64,

/// The length of the sample to generate (in tokens).
#[arg(long, short = 'n', default_value_t = 10000)]
sample_len: usize,

/// The model size to use.
#[arg(long, default_value = "v1-preview")]
which: Which,

#[arg(long)]
model_id: Option<String>,

#[arg(long, default_value = "main")]
revision: String,

#[arg(long)]
tokenizer: Option<String>,

#[arg(long)]
config: Option<String>,

#[arg(long)]
weights: Option<String>,

/// Penalty to be applied for repeating tokens, 1. means no penalty.
#[arg(long, default_value_t = 1.1)]
repeat_penalty: f32,

/// The context size to consider for the repeat penalty.
#[arg(long, default_value_t = 64)]
repeat_last_n: usize,
}

fn main() -> Result<()> {
use tracing_chrome::ChromeLayerBuilder;
use tracing_subscriber::prelude::*;

let args = Args::parse();

let _guard = if args.tracing {
let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
tracing_subscriber::registry().with(chrome_layer).init();
Some(guard)
} else {
None
};
println!(
"avx: {}, neon: {}, simd128: {}, f16c: {}",
candle::utils::with_avx(),
candle::utils::with_neon(),
candle::utils::with_simd128(),
candle::utils::with_f16c()
);
println!(
"temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
args.temperature, args.repeat_penalty, args.repeat_last_n
);

let start = std::time::Instant::now();
let api = Api::new()?;
let model_id = match args.model_id {
Some(model_id) => model_id,
None => {
let name = match args.which {
Which::V1Preview => "kyutai/helium-1-preview",
};
name.to_string()
}
};
let repo = api.repo(Repo::with_revision(
model_id,
RepoType::Model,
args.revision,
));
let tokenizer_filename = match args.tokenizer {
Some(file) => std::path::PathBuf::from(file),
None => repo.get("tokenizer.json")?,
};
let filenames = match args.weights {
Some(files) => files
.split(',')
.map(std::path::PathBuf::from)
.collect::<Vec<_>>(),
None => candle_examples::hub_load_safetensors(&repo, "model.safetensors")?,
};
println!("retrieved the files in {:?}", start.elapsed());
let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;

let start = std::time::Instant::now();
let config: Config = match args.config {
Some(config_file) => serde_json::from_slice(&std::fs::read(config_file)?)?,
None => {
let config_file = repo.get("config.json")?;
serde_json::from_slice(&std::fs::read(config_file)?)?
}
};
let device = candle_examples::device(args.cpu)?;
let (model, device) = {
let dtype = if device.is_cuda() {
DType::BF16
} else {
DType::F32
};
let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? };
let model = Model::new(&config, vb)?;
(model, device)
};

println!("loaded the model in {:?}", start.elapsed());

let mut pipeline = TextGeneration::new(
model,
tokenizer,
args.seed,
Some(args.temperature),
args.top_p,
args.top_k,
args.repeat_penalty,
args.repeat_last_n,
config,
&device,
);
pipeline.run(&args.prompt, args.sample_len)?;
Ok(())
}
Loading

0 comments on commit 46115fa

Please sign in to comment.