-
Notifications
You must be signed in to change notification settings - Fork 1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add BertForMaskedLM to support SPLADE Models (#2550)
* add bert for masked lm * working example * add example readme * Clippy fix. * And apply rustfmt. --------- Co-authored-by: Laurent <[email protected]>
- Loading branch information
1 parent
edf7668
commit 937e8ed
Showing
3 changed files
with
335 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
# candle-splade | ||
|
||
SPLADE is a neural retrieval model which learns query/document sparse expansion via the BERT MLM head and sparse regularization. Sparse representations benefit from several advantages compared to dense approaches: efficient use of inverted index, explicit lexical match, interpretability... They also seem to be better at generalizing on out-of-domain data. In this example we can do the following two tasks: | ||
|
||
- Compute sparse embedding for a given query. | ||
- Compute similarities between a set of sentences using sparse embeddings. | ||
|
||
## Sparse Sentence embeddings | ||
|
||
SPLADE is used to compute the sparse embedding for a given query. The model weights | ||
are downloaded from the hub on the first run. This makes use of the BertForMaskedLM model. | ||
|
||
```bash | ||
cargo run --example splade --release -- --prompt "Here is a test sentence" | ||
|
||
> "the out there still house inside position outside stay standing hotel sitting dog animal sit bird cat statue cats" | ||
> [0.10270107, 0.269471, 0.047469813, 0.0016636598, 0.05394874, 0.23105666, 0.037475716, 0.45949644, 0.009062732, 0.06790692, 0.0327835, 0.33122346, 0.16863061, 0.12688516, 0.340983, 0.044972017, 0.47724655, 0.01765311, 0.37331146] | ||
``` | ||
|
||
```bash | ||
cargo run --example splade --release --features | ||
|
||
> score: 0.47 'The new movie is awesome' 'The new movie is so great' | ||
> score: 0.43 'The cat sits outside' 'The cat plays in the garden' | ||
> score: 0.14 'I love pasta' 'Do you like pizza?' | ||
> score: 0.11 'A man is playing guitar' 'The cat plays in the garden' | ||
> score: 0.05 'A man is playing guitar' 'A woman watches TV' | ||
``` |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,210 @@ | ||
use std::path::PathBuf; | ||
|
||
use anyhow::{Error as E, Result}; | ||
use candle::Tensor; | ||
use candle_nn::VarBuilder; | ||
use candle_transformers::models::bert::{self, BertForMaskedLM, Config}; | ||
use clap::Parser; | ||
use hf_hub::{api::sync::Api, Repo, RepoType}; | ||
use tokenizers::{PaddingParams, Tokenizer}; | ||
|
||
#[derive(Parser, Debug)] | ||
#[command(author, version, about, long_about = None)] | ||
struct Args { | ||
/// Run on CPU rather than on GPU. | ||
#[arg(long)] | ||
cpu: bool, | ||
|
||
/// Enable tracing (generates a trace-timestamp.json file). | ||
#[arg(long)] | ||
tracing: bool, | ||
|
||
/// The model to use, check out available models: https://huggingface.co/models?library=sentence-transformers&sort=trending | ||
#[arg(long)] | ||
model_id: Option<String>, | ||
|
||
#[arg(long, default_value = "main")] | ||
revision: String, | ||
|
||
// Path to the tokenizer file. | ||
#[arg(long)] | ||
tokenizer_file: Option<String>, | ||
|
||
// Path to the weight files. | ||
#[arg(long)] | ||
weight_files: Option<String>, | ||
|
||
// Path to the config file. | ||
#[arg(long)] | ||
config_file: Option<String>, | ||
|
||
/// When set, compute embeddings for this prompt. | ||
#[arg(long)] | ||
prompt: Option<String>, | ||
} | ||
|
||
fn main() -> Result<()> { | ||
let args = Args::parse(); | ||
let api = Api::new()?; | ||
let model_id = match &args.model_id { | ||
Some(model_id) => model_id.to_string(), | ||
None => "prithivida/Splade_PP_en_v1".to_string(), | ||
}; | ||
let repo = api.repo(Repo::with_revision( | ||
model_id, | ||
RepoType::Model, | ||
args.revision, | ||
)); | ||
|
||
let tokenizer_filename = match args.tokenizer_file { | ||
Some(file) => std::path::PathBuf::from(file), | ||
None => repo.get("tokenizer.json")?, | ||
}; | ||
|
||
let config_filename = match args.config_file { | ||
Some(file) => std::path::PathBuf::from(file), | ||
None => repo.get("config.json")?, | ||
}; | ||
|
||
let weights_filename = match args.weight_files { | ||
Some(files) => PathBuf::from(files), | ||
None => match repo.get("model.safetensors") { | ||
Ok(safetensors) => safetensors, | ||
Err(_) => match repo.get("pytorch_model.bin") { | ||
Ok(pytorch_model) => pytorch_model, | ||
Err(e) => { | ||
return Err(anyhow::Error::msg(format!("Model weights not found. The weights should either be a `model.safetensors` or `pytorch_model.bin` file. Error: {}", e))); | ||
} | ||
}, | ||
}, | ||
}; | ||
|
||
let config = std::fs::read_to_string(config_filename)?; | ||
let config: Config = serde_json::from_str(&config)?; | ||
let mut tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?; | ||
|
||
let device = candle_examples::device(args.cpu)?; | ||
let dtype = bert::DTYPE; | ||
|
||
let vb = if weights_filename.ends_with("model.safetensors") { | ||
unsafe { VarBuilder::from_mmaped_safetensors(&[weights_filename], dtype, &device).unwrap() } | ||
} else { | ||
println!("Loading weights from pytorch_model.bin"); | ||
VarBuilder::from_pth(&weights_filename, dtype, &device).unwrap() | ||
}; | ||
let model = BertForMaskedLM::load(vb, &config)?; | ||
|
||
if let Some(prompt) = args.prompt { | ||
let tokenizer = tokenizer | ||
.with_padding(None) | ||
.with_truncation(None) | ||
.map_err(E::msg)?; | ||
let tokens = tokenizer | ||
.encode(prompt, true) | ||
.map_err(E::msg)? | ||
.get_ids() | ||
.to_vec(); | ||
|
||
let token_ids = Tensor::new(&tokens[..], &device)?.unsqueeze(0)?; | ||
let token_type_ids = token_ids.zeros_like()?; | ||
|
||
let ys = model.forward(&token_ids, &token_type_ids, None)?; | ||
let vec = Tensor::log( | ||
&Tensor::try_from(1.0)? | ||
.to_dtype(dtype)? | ||
.to_device(&device)? | ||
.broadcast_add(&ys.relu()?)?, | ||
)? | ||
.max(1)?; | ||
let vec = normalize_l2(&vec)?; | ||
|
||
let vec = vec.squeeze(0)?.to_vec1::<f32>()?; | ||
|
||
let indices = (0..vec.len()) | ||
.filter(|&i| vec[i] != 0.0) | ||
.map(|x| x as u32) | ||
.collect::<Vec<_>>(); | ||
|
||
let tokens = tokenizer.decode(&indices, true).unwrap(); | ||
println!("{tokens:?}"); | ||
let values = indices.iter().map(|&i| vec[i as usize]).collect::<Vec<_>>(); | ||
println!("{values:?}"); | ||
} else { | ||
let sentences = [ | ||
"The cat sits outside", | ||
"A man is playing guitar", | ||
"I love pasta", | ||
"The new movie is awesome", | ||
"The cat plays in the garden", | ||
"A woman watches TV", | ||
"The new movie is so great", | ||
"Do you like pizza?", | ||
]; | ||
|
||
let n_sentences = sentences.len(); | ||
if let Some(pp) = tokenizer.get_padding_mut() { | ||
pp.strategy = tokenizers::PaddingStrategy::BatchLongest | ||
} else { | ||
let pp = PaddingParams { | ||
strategy: tokenizers::PaddingStrategy::BatchLongest, | ||
..Default::default() | ||
}; | ||
tokenizer.with_padding(Some(pp)); | ||
} | ||
let tokens = tokenizer | ||
.encode_batch(sentences.to_vec(), true) | ||
.map_err(E::msg)?; | ||
let token_ids = tokens | ||
.iter() | ||
.map(|tokens| { | ||
let tokens = tokens.get_ids().to_vec(); | ||
Ok(Tensor::new(tokens.as_slice(), &device)?) | ||
}) | ||
.collect::<Result<Vec<_>>>()?; | ||
let attention_mask = tokens | ||
.iter() | ||
.map(|tokens| { | ||
let tokens = tokens.get_attention_mask().to_vec(); | ||
Ok(Tensor::new(tokens.as_slice(), &device)?) | ||
}) | ||
.collect::<Result<Vec<_>>>()?; | ||
|
||
let token_ids = Tensor::stack(&token_ids, 0)?; | ||
let attention_mask = Tensor::stack(&attention_mask, 0)?; | ||
let token_type_ids = token_ids.zeros_like()?; | ||
|
||
let ys = model.forward(&token_ids, &token_type_ids, Some(&attention_mask))?; | ||
let vector = Tensor::log( | ||
&Tensor::try_from(1.0)? | ||
.to_dtype(dtype)? | ||
.to_device(&device)? | ||
.broadcast_add(&ys.relu()?)?, | ||
)?; | ||
let vector = vector | ||
.broadcast_mul(&attention_mask.unsqueeze(2)?.to_dtype(dtype)?)? | ||
.max(1)?; | ||
let vec = normalize_l2(&vector)?; | ||
let mut similarities = vec![]; | ||
for i in 0..n_sentences { | ||
let e_i = vec.get(i)?; | ||
for j in (i + 1)..n_sentences { | ||
let e_j = vec.get(j)?; | ||
let sum_ij = (&e_i * &e_j)?.sum_all()?.to_scalar::<f32>()?; | ||
let sum_i2 = (&e_i * &e_i)?.sum_all()?.to_scalar::<f32>()?; | ||
let sum_j2 = (&e_j * &e_j)?.sum_all()?.to_scalar::<f32>()?; | ||
let cosine_similarity = sum_ij / (sum_i2 * sum_j2).sqrt(); | ||
similarities.push((cosine_similarity, i, j)) | ||
} | ||
} | ||
similarities.sort_by(|u, v| v.0.total_cmp(&u.0)); | ||
for &(score, i, j) in similarities[..5].iter() { | ||
println!("score: {score:.2} '{}' '{}'", sentences[i], sentences[j]) | ||
} | ||
} | ||
|
||
Ok(()) | ||
} | ||
|
||
pub fn normalize_l2(v: &Tensor) -> Result<Tensor> { | ||
Ok(v.broadcast_div(&v.sqr()?.sum_keepdim(1)?.sqrt()?)?) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters