Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

llm_as_a_judge_for_oallv2_arabic #498

Merged
merged 6 commits into from
Jan 23, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
215 changes: 214 additions & 1 deletion community_tasks/arabic_evals.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,8 +28,11 @@
"""
import random
import re
from typing import Any, Dict, List, Optional, Union

from lighteval.metrics.metrics import Metrics
from lighteval.metrics.llm_as_judge import JudgeLM
from lighteval.metrics.metrics import Metric, MetricCategory, Metrics
from lighteval.metrics.utils.metric_utils import MetricUseCase
from lighteval.tasks.default_prompts import LETTER_INDICES
from lighteval.tasks.lighteval_task import LightevalTaskConfig
from lighteval.tasks.requests import Doc
Expand Down Expand Up @@ -832,6 +835,215 @@ def __init__(
]


class JudgeMetricWrapper(Metric):
"""Wrapper class for LLM-based judge metric implementation."""

def __init__(self, judge: JudgeLM):
"""
Initializes the judge metric wrapper.

Args:
judge (JudgeLM): The LLM judge instance to use for evaluation.
"""
self.judge = judge
self.metric_name = "llm_as_judge"
self.category = MetricCategory.LLM_AS_JUDGE
self.corpus_level_fn = self.aggregate_scores
self.sample_level_fn = self._sample_level_fn
self.higher_is_better = True # Fixed tuple syntax
self.use_case = MetricUseCase.NONE

def compute(self, responses: list[str], formatted_docs: list[Doc], **kwargs) -> dict[str, float]:
"""
Computes evaluation scores using the judge's evaluate_answer method.

Args:
responses (list[str]): The predicted answers
formatted_docs (list[Doc]): Documents containing questions and gold answers

Returns:
dict[str, float]: Dictionary containing evaluation scores
"""
results = []
for i, doc in enumerate(formatted_docs):
question = doc.query
gold = doc.choices[doc.gold_index] if doc.gold_index is not None else None
answer = responses[i][0].result[0]

score, _, _ = self.judge.evaluate_answer(question=question, answer=answer, options=None, gold=gold)
results.append({self.metric_name: score})

return results

def aggregate_scores(self, scores: list[dict]) -> float:
return sum(scores) / len(scores) if scores else 0.0

def _sample_level_fn(self):
return None


def parse_candidates(candidates: Union[List[str], str]) -> List[str]:
"""
Parses and validates candidate answers from either list or string format.

Args:
candidates: Either a list of candidate answers or a newline-separated string

Returns:
List[str]: List of validated candidate answers

Raises:
ValueError: If candidates cannot be parsed or are empty
"""
try:
if isinstance(candidates, list):
parsed_candidates = [str(c).strip() for c in candidates if c]
else:
parsed_candidates = [c.strip() for c in str(candidates).split("\n") if c.strip()]

if not parsed_candidates:
raise ValueError("No valid candidates found after parsing")

return parsed_candidates
except Exception as e:
raise ValueError(f"Failed to parse candidates: {str(e)}")


def qa_prompt_arabic(line: Dict[str, Any], task_name: str = None) -> Doc:
"""
Formats the prompt for Arabic question answering with candidates.

Args:
line: Dictionary containing question and candidate information
task_name: Optional name for the task

Returns:
Doc: Formatted document for evaluation

Raises:
ValueError: If required fields are missing or invalid
"""
try:
# Validates and extracts the question
if not isinstance(line.get("question"), str):
raise ValueError("Question must be a string")
question = line["question"]

# Processes candidate answers
candidates = parse_candidates(line["candidates"])

# Validates gold answer
if "gold_answer" not in line:
raise ValueError("Gold answer is required")
gold_answer = str(line["gold_answer"])

# Constructs the prompt
instruction = "بناءً على السياقات المقترحة التالية، اجب عن السؤال التالي"
query = f"{instruction}\n\nالسؤال:\n{question}\n\nالسياقات المقترحة:\n{', '.join(candidates)}\n"

return Doc(
task_name=task_name or "alrage",
query=query,
instruction=instruction,
choices=[gold_answer], # Gold answer is used as the only valid choice
gold_index=0, # Index of the correct answer in choices
)
except Exception as e:
raise ValueError(f"Failed to create QA prompt: {str(e)}")


def judge_template(question: str, answer: str, gold: str, options: Optional[List[str]] = None) -> List[Dict[str, str]]:
"""
Template for the Arabic judge prompt.

System prompt translation:
You are a neutral expert evaluator. Your tasks are:
1. Evaluate the answer's accuracy compared to the correct answer
2. Verify that the answer is supported by the provided context
3. Evaluate the quality and comprehensiveness of the answer
Rate the answer on a scale from 0 to 10.

Args:
question: The question being evaluated
answer: The provided answer
gold: The correct answer
options: Optional list of answer choices

Returns:
List[Dict[str, str]]: Formatted messages for the judge
"""
messages = [
{
"role": "system",
"content": """أنت مقيّم محايد خبير باللغة العربية. يجب عليك:
1. تقييم دقة الإجابة مقارنة بالإجابة الصحيحة
2. التحقق من أن الإجابة مدعومة بالسياق المقدم
3. تقييم جودة وشمولية الإجابة

مهم جداً: يجب أن يكون ردك رقماً فقط من 0 إلى 10. لا تضف أي نص أو تفسير.""",
},
{
"role": "user",
"content": f"""السؤال: {question}

الإجابة المقدمة: {answer}

الإجابة الصحيحة: {gold}

أعط تقييماً من 0 إلى 10:
0-2: إجابة خاطئة تماماً
3-4: إجابة جزئية مع أخطاء
5-6: إجابة متوسطة
7-8: إجابة جيدة
9-10: إجابة ممتازة

اكتب رقماً فقط من 0 إلى 10 بدون أي نص إضافي:""",
},
]
return messages


def process_judge_response(response) -> float:
"""Process the judge's response to extract the score"""
# If response is a list, extract the content from the user role
if isinstance(response, list):
response_content = " ".join(item["content"] for item in response if item["role"] == "user")
else:
response_content = response # If it's not a list, use it directly

try:
# Extract the score from the response content
score = float(next(num for num in response_content.split() if num.replace(".", "", 1).isdigit()))
return min(max(score / 10.0, 0.0), 1.0)
except (StopIteration, ValueError):
return 0.0


judge = JudgeLM(
model="Qwen/Qwen2.5-72B-Instruct",
templates=judge_template,
process_judge_response=process_judge_response,
judge_backend="vllm",
)

wrapped_judge = JudgeMetricWrapper(judge)

# Task configuration
alrage_qa_task = LightevalTaskConfig(
name="alrage_qa",
prompt_function=qa_prompt_arabic,
suite=["community"],
hf_repo="OALL/ALRAGE",
hf_subset=None,
hf_avail_splits=["train"],
evaluation_splits=["train"],
metric=[wrapped_judge],
trust_dataset=True,
generation_size=200,
stop_sequence=[],
version=0,
)

TASKS_TABLE = (
ARABIC_MMLU_TASKS
+ ARABIC_MMLU_HT_TASKS
Expand All @@ -852,4 +1064,5 @@ def __init__(
+ [hellaswag_okapi_ar_task]
+ [toxigen_ar_task]
+ [sciq_ar_task]
+ [alrage_qa_task]
)
1 change: 1 addition & 0 deletions examples/tasks/OALL_v2_tasks.txt
Original file line number Diff line number Diff line change
Expand Up @@ -115,3 +115,4 @@ community|arabic_mmlu_ht:sociology|0|0
community|arabic_mmlu_ht:us_foreign_policy|0|0
community|arabic_mmlu_ht:virology|0|0
community|arabic_mmlu_ht:world_religions|0|0
community|alrage_qa|0|0
Loading