Skip to content

Commit

Permalink
perf: add Marlin to w4a16 benchmark
Browse files Browse the repository at this point in the history
  • Loading branch information
shcho1118 authored and dacorvo committed Sep 25, 2024
1 parent 5ee88af commit 0b512d7
Showing 1 changed file with 31 additions and 2 deletions.
33 changes: 31 additions & 2 deletions bench/kernels/benchmark_w4a16.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,8 @@
import torch

from optimum.quanto.tensor.weights.awq import AWQPackedTensor, AWQPacking
from optimum.quanto.tensor.weights.marlin import marlin_permute
from optimum.quanto.tensor.weights.marlin.int4 import MarlinInt4PackedTensor


def benchmark(f, warmup=1, iter=10):
Expand All @@ -28,12 +30,15 @@ def get_problem(m, n, k, groupsize=128):
A = torch.rand((m, k), dtype=torch.half, device=dev)
B_4bit = torch.randint(0, 2**4, (n, k), dtype=torch.uint8, device=dev)
B_awq = AWQPackedTensor.pack(B_4bit, packing=AWQPacking.V2)._data
B_marlin = MarlinInt4PackedTensor.pack(B_4bit)._data
B_ref = torch.rand((k, n), dtype=torch.half, device=dev)
s = torch.rand((k // groupsize, n), dtype=torch.half, device=dev) / 2**4
s_marlin = marlin_permute(s)
z = torch.randint(-(2 ** (4 - 1)), 2 ** (4 - 1), (k // groupsize, n), dtype=torch.int8, device=dev)
sz = -z * s
sz_marlin = marlin_permute(sz)
torch.cuda.synchronize()
return A, B_ref, B_awq, s, sz
return A, B_ref, B_awq, B_marlin, s, s_marlin, sz, sz_marlin


def benchmark_dense(A, B, m, n, k):
Expand All @@ -56,6 +61,16 @@ def benchmark_awq(A, B, s, sz, m, n, k):
}


def benchmark_marlin(A, B, s, sz, m, n, k):
workspace = torch.zeros(n // 128 * 16, dtype=torch.int, device=torch.device("cuda:0"))
res = benchmark(lambda: torch.ops.quanto.gemm_f16i4_marlin(A, B, s, sz, workspace))
return {
"s": res,
"TFLOP/s": 2 * (m * k) * n / res / 10**12,
"GB/s": (2 * A.numel() + 4 * B.numel() + 2 * (m * n) + 2 * s.numel() + 2 * sz.numel()) / res / 10**9,
}


MODELS = {
"Llama7B": [(4096, 3 * 4096), (4096, 4096), (4096, 2 * 10752), (10752, 4096)],
"Llama13B": [(5120, 3 * 5120), (5120, 5120), (5120, 2 * 13568), (13568, 5120)],
Expand All @@ -79,23 +94,37 @@ def run_benchmark(model, tokens=None):
print(model)
for m in tokens:
tot_awq = {"s": 0, "TFLOP/s": 0, "GB/s": 0, "speedup": 0}
tot_marlin = {"s": 0, "TFLOP/s": 0, "GB/s": 0, "speedup": 0}
for layer in layers:
k, n = layer
A, B_ref, B_awq, s, sz = get_problem(m, n, k, groupsize)
A, B_ref, B_awq, B_marlin, s, s_marlin, sz, sz_marlin = get_problem(m, n, k, groupsize)
res_d = benchmark_dense(A, B_ref, m, n, k)
res_awq = benchmark_awq(A, B_awq, s, sz, m, n, k)
res_awq["speedup"] = res_d["s"] / res_awq["s"]
tot_awq["s"] += res_awq["s"]
for key in tot_awq:
if key != "s":
tot_awq[key] += res_awq[key] * res_awq["s"]
res_marlin = benchmark_marlin(A, B_marlin, s_marlin, sz_marlin, m, n, k)
res_marlin["speedup"] = res_d["s"] / res_marlin["s"]
tot_marlin["s"] += res_marlin["s"]
for key in tot_marlin:
if key != "s":
tot_marlin[key] += res_marlin[key] * res_marlin["s"]
for key in tot_awq:
if key != "s":
tot_awq[key] /= tot_awq["s"]
for key in tot_marlin:
if key != "s":
tot_marlin[key] /= tot_marlin["s"]
print(
"AWQ, tokens=%04d: s=%.5f, TFLOP/s=%07.3f, GB/s=%08.3f, speedup=%.2f"
% (m, tot_awq["s"], tot_awq["TFLOP/s"], tot_awq["GB/s"], tot_awq["speedup"])
)
print(
"Marlin, batch=%04d: s=%.5f, TFLOP/s=%07.3f, GB/s=%08.3f, speedup=%.2f"
% (m, tot_marlin["s"], tot_marlin["TFLOP/s"], tot_marlin["GB/s"], tot_marlin["speedup"])
)


def main():
Expand Down

0 comments on commit 0b512d7

Please sign in to comment.