-
Notifications
You must be signed in to change notification settings - Fork 67
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat(qtensor): add MarlinQBitsTensor
- Loading branch information
Showing
3 changed files
with
290 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1,2 @@ | ||
from .packed import * | ||
from .qbits import * |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,168 @@ | ||
# Copyright 2024 The HuggingFace Team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import ast | ||
|
||
import torch | ||
from torch.autograd import Function | ||
|
||
from ....function import QuantizedLinearFunction | ||
from ....grouped import group, ungroup | ||
from ....qtype import qtypes | ||
from ...qbits import WeightQBitsTensor | ||
from ..permutations import marlin_permute | ||
from .packed import MarlinInt4PackedTensor | ||
|
||
|
||
__all__ = ["MarlinInt4WeightQBitsTensor"] | ||
|
||
|
||
class MarlinQBitsDequantizer(Function): | ||
@staticmethod | ||
def forward(ctx, t): | ||
unpacked = t._data.unpack() | ||
scale = t._scale | ||
shift = t._shift | ||
unpacked = group(unpacked, axis=0, group_size=t._group_size) | ||
# Apply inverted permutations | ||
scale = marlin_permute(scale, reverse=True) | ||
shift = marlin_permute(shift, reverse=True) | ||
n_scales = scale.numel() | ||
scale = scale.t().reshape((n_scales, 1)) | ||
shift = shift.t().reshape((n_scales, 1)) | ||
# Shift is already scaled and negated | ||
dqt = scale * unpacked + shift | ||
return ungroup(dqt, axis=t.axis, orig_shape=t.shape) | ||
|
||
@staticmethod | ||
def backward(ctx, gO): | ||
return gO | ||
|
||
|
||
class MarlinQBitsLinearFunction(QuantizedLinearFunction): | ||
@staticmethod | ||
def forward(ctx, input, other, bias): | ||
ctx.save_for_backward(input, other) | ||
if type(input) is not torch.Tensor: | ||
input = input.dequantize() | ||
out_features, in_features = other.shape | ||
output = torch.ops.quanto.gemm_f16i4_marlin( | ||
input, | ||
other._data._data, | ||
other._scale, | ||
other._shift, | ||
other._workspace, | ||
) | ||
if bias is not None: | ||
output = output + bias | ||
return output | ||
|
||
|
||
class MarlinInt4WeightQBitsTensor(WeightQBitsTensor): | ||
@staticmethod | ||
def __new__(cls, qtype, axis, group_size, size, stride, data, scale, shift, requires_grad=False): | ||
assert data.device.type == "cuda" | ||
assert data.device == scale.device | ||
assert data.device == shift.device | ||
return torch.Tensor._make_wrapper_subclass( | ||
cls, size, strides=stride, dtype=scale.dtype, device=data.device, requires_grad=requires_grad | ||
) | ||
|
||
def __init__(self, qtype, axis, group_size, size, stride, data, scale, shift, requires_grad=False): | ||
assert axis == 0 | ||
out_features, in_features = size | ||
if not isinstance(data, MarlinInt4PackedTensor): | ||
assert type(data) is torch.Tensor | ||
# Format data, scale and shift for optimized CUDA gemm | ||
ungrouped = ungroup(data, axis=0, orig_shape=size) | ||
data = MarlinInt4PackedTensor.pack(ungrouped) | ||
scale = scale.reshape(out_features, in_features // group_size).t().contiguous() | ||
shift = shift.reshape(out_features, in_features // group_size).t() | ||
if not shift.dtype.is_floating_point: | ||
# Integer shift must be scaled | ||
shift = scale * shift | ||
# Shift must be negated | ||
shift = -shift.contiguous() | ||
# Finally, apply scale and shift permutations | ||
scale = marlin_permute(scale) | ||
shift = marlin_permute(shift) | ||
super().__init__(qtype, axis, group_size, size, stride, data, scale, shift) | ||
self._workspace = torch.zeros(out_features // 128 * 16, dtype=torch.int, device=data.device) | ||
|
||
def dequantize(self): | ||
return MarlinQBitsDequantizer.apply(self) | ||
|
||
def weight_qbits_tensor(self): | ||
"""Convert back to a WeightQBitsTensor | ||
This is required to make sure only standard packing is used when serializing. | ||
""" | ||
data = group(self._data.unpack(), axis=self.axis, group_size=self._group_size) | ||
scale = marlin_permute(self._scale, reverse=True) | ||
shift = marlin_permute(self._shift, reverse=True) | ||
n_scales = scale.numel() | ||
scale = scale.t().reshape((n_scales, 1)) | ||
shift = -shift.t().reshape((n_scales, 1)) | ||
return WeightQBitsTensor( | ||
self._qtype, self._axis, self._group_size, self.size(), self.stride(), data, scale, shift | ||
) | ||
|
||
def __tensor_flatten__(self): | ||
inner_tensors = ["_data", "_scale", "_shift"] | ||
# Since meta can be used for serialization, use only strings | ||
meta = { | ||
"qtype": self._qtype.name, | ||
"axis": str(self._axis), | ||
"group_size": str(self._group_size), | ||
"size": str(list(self.size())), | ||
"stride": str(list(self.stride())), | ||
} | ||
return inner_tensors, meta | ||
|
||
@staticmethod | ||
def __tensor_unflatten__(inner_tensors, meta, outer_size, outer_stride): | ||
assert len(inner_tensors) == 3 | ||
assert len(meta) == 5 | ||
data, scale, shift = inner_tensors["_data"], inner_tensors["_scale"], inner_tensors["_shift"] | ||
# Meta should only contain strings, AST compatible except qtype | ||
qtype = qtypes[meta["qtype"]] | ||
axis = ast.literal_eval(meta["axis"]) | ||
group_size = ast.literal_eval(meta["group_size"]) | ||
size = ast.literal_eval(meta["size"]) | ||
stride = ast.literal_eval(meta["stride"]) | ||
return MarlinInt4WeightQBitsTensor(qtype, axis, group_size, size, stride, data, scale, shift) | ||
|
||
@classmethod | ||
def __torch_function__(cls, func, types, args=(), kwargs=None): | ||
"""Dispatch torch functions applied on this subtensor | ||
This method is called whenever a torch function (such as `torch.nn.functional.linear`) | ||
is called with at least one parameter coresponding to this subtensor: | ||
- if a quantized implementation exists for the selected function, it is called, | ||
- otherwise, the original implementation is called, deactivating further functional dispatch. | ||
During the execution of the standard torch function, a second-level of dispatch will | ||
happen, but this time directly on individual torch Tensor operations (mainly ATEN). | ||
""" | ||
kwargs = kwargs or {} | ||
if func is torch.nn.functional.linear: | ||
|
||
def qlinear(input, other, bias=None): | ||
return MarlinQBitsLinearFunction.apply(input, other, bias) | ||
|
||
return qlinear(*args, **kwargs) | ||
# Defer to operations dispatcher | ||
with torch._C.DisableTorchFunctionSubclass(): | ||
return func(*args, **kwargs) |
121 changes: 121 additions & 0 deletions
121
test/tensor/weights/optimized/test_marlin_int4_weight_qbits_tensor.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,121 @@ | ||
# Copyright 2024 The HuggingFace Team. All rights reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import pytest | ||
import torch | ||
from helpers import assert_similar, device_eq, random_tensor, random_weight_qbits_tensor | ||
|
||
from optimum.quanto import qint4 | ||
from optimum.quanto.tensor.weights import WeightQBitsTensor | ||
from optimum.quanto.tensor.weights.marlin.int4 import MarlinInt4WeightQBitsTensor | ||
|
||
|
||
@pytest.mark.skipif( | ||
not torch.cuda.is_available() or torch.cuda.get_device_capability()[0] < 8, reason="CUDA >= sm80 not available" | ||
) | ||
@pytest.mark.parametrize("in_features", [128, 256, 512, 1024]) | ||
@pytest.mark.parametrize("out_features", [128, 256, 512, 1024]) | ||
def test_marlin_int4_weight_qbits_tensor_from_qbits_tensor(in_features, out_features): | ||
qtype = qint4 | ||
group_size = 128 | ||
dtype = torch.float16 | ||
shape = (out_features, in_features) | ||
device = torch.device("cuda") | ||
qbt = random_weight_qbits_tensor(shape, qtype, dtype, group_size, device) | ||
# Create a MarlinInt4WeightQBitsTensor from the WeightQBitsTensor members | ||
marlinqbt = MarlinInt4WeightQBitsTensor( | ||
qtype=qbt.qtype, | ||
axis=qbt.axis, | ||
group_size=qbt._group_size, | ||
size=qbt.size(), | ||
stride=qbt.stride(), | ||
data=qbt._data.unpack(), | ||
scale=qbt._scale, | ||
shift=qbt._shift, | ||
) | ||
assert marlinqbt.dtype == dtype | ||
assert marlinqbt.qtype == qtype | ||
assert marlinqbt.shape == shape | ||
assert device_eq(marlinqbt.device, device) | ||
# Verify the dequantized tensors are identical | ||
assert torch.equal(marlinqbt.dequantize(), qbt.dequantize()) | ||
# Now verify that we can reconstruct the WeightQBitsTensor | ||
new_qbt = marlinqbt.weight_qbits_tensor() | ||
assert type(new_qbt) is WeightQBitsTensor | ||
assert new_qbt.dtype == dtype | ||
assert new_qbt.qtype == qtype | ||
assert new_qbt.shape == shape | ||
assert torch.equal(new_qbt._data, qbt._data) | ||
assert torch.equal(new_qbt._scale, qbt._scale) | ||
assert torch.equal(new_qbt._shift, qbt._shift) | ||
|
||
|
||
@pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA not available") | ||
def test_marlin_int4_weight_qbits_tensor_move(device): | ||
qtype = qint4 | ||
group_size = 128 | ||
dtype = torch.float16 | ||
shape = (1024, 1024) | ||
device = torch.device("cuda") | ||
# Create an MarlinInt4WeightQBitsTensor from a QBitsTensor on CUDA | ||
qbt = random_weight_qbits_tensor(shape, qtype, dtype, group_size, device=torch.device("cuda")) | ||
marlinqbt = MarlinInt4WeightQBitsTensor( | ||
qtype=qbt.qtype, | ||
axis=qbt.axis, | ||
group_size=qbt._group_size, | ||
size=qbt.size(), | ||
stride=qbt.stride(), | ||
data=qbt._data.unpack(), | ||
scale=qbt._scale, | ||
shift=qbt._shift, | ||
) | ||
# Move to device, dequantize and compare | ||
moved_qbt = marlinqbt.to(device) | ||
assert isinstance(moved_qbt, WeightQBitsTensor) | ||
if device.type != "cuda": | ||
assert type(moved_qbt) is not MarlinInt4WeightQBitsTensor | ||
assert marlinqbt.dtype == moved_qbt.dtype | ||
assert marlinqbt.qtype == moved_qbt.qtype | ||
assert marlinqbt.shape == moved_qbt.shape | ||
assert torch.equal(marlinqbt.dequantize().to(device), moved_qbt.dequantize()) | ||
|
||
|
||
@pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA not available") | ||
@pytest.mark.parametrize("batch_size", [1, 10]) | ||
@pytest.mark.parametrize("tokens, embeddings", [(256, 256)]) | ||
@pytest.mark.parametrize("use_bias", [True, False], ids=["bias", "no-bias"]) | ||
def test_marlin_int4_weight_qbits_tensor_linear(batch_size, tokens, embeddings, use_bias): | ||
device = torch.device("cuda") | ||
dtype = torch.float16 | ||
weight_qtype = qint4 | ||
group_size = 128 | ||
inputs = torch.rand((batch_size,) + (tokens, embeddings), dtype=dtype, device=device) | ||
# Create an MarlinInt4WeightQBitsTensor from a QBitsTensor on CUDA | ||
qbt = random_weight_qbits_tensor( | ||
(embeddings, embeddings), weight_qtype, dtype, group_size, device=torch.device("cuda") | ||
) | ||
marlin_qweight = MarlinInt4WeightQBitsTensor( | ||
qtype=qbt.qtype, | ||
axis=qbt.axis, | ||
group_size=qbt._group_size, | ||
size=qbt.size(), | ||
stride=qbt.stride(), | ||
data=qbt._data.unpack(), | ||
scale=qbt._scale, | ||
shift=qbt._shift, | ||
) | ||
bias = random_tensor((embeddings,), dtype=dtype).to(device) if use_bias else None | ||
qout = torch.nn.functional.linear(inputs, marlin_qweight, bias) | ||
out = torch.nn.functional.linear(inputs, qbt.dequantize(), bias) | ||
assert_similar(out, qout) |