Skip to content

Commit

Permalink
Fix: loading DBRX back from saved path (#35728)
Browse files Browse the repository at this point in the history
* fix dtype as dict for some models + add test

* add comment in tests
  • Loading branch information
zucchini-nlp authored Jan 28, 2025
1 parent 3613f56 commit b764c20
Show file tree
Hide file tree
Showing 4 changed files with 13 additions and 4 deletions.
4 changes: 3 additions & 1 deletion src/transformers/modeling_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -4037,7 +4037,9 @@ def from_pretrained(
sub_config = getattr(config, sub_config_key)
sub_config.torch_dtype = torch_dtype
elif isinstance(torch_dtype, torch.dtype):
pass
for sub_config_key in config.sub_configs.keys():
sub_config = getattr(config, sub_config_key)
sub_config.torch_dtype = torch_dtype
elif isinstance(torch_dtype, dict):
for key, curr_dtype in torch_dtype.items():
if hasattr(config, key):
Expand Down
4 changes: 2 additions & 2 deletions src/transformers/models/dbrx/configuration_dbrx.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@ def __init__(
self.kv_n_heads = kv_n_heads
self.rope_theta = rope_theta

for k in ["model_type", "attn_implementation", "transformers_version", "_commit_hash"]:
for k in ["model_type", "attn_implementation", "transformers_version", "_commit_hash", "torch_dtype"]:
if k in kwargs:
kwargs.pop(k)
if len(kwargs) != 0:
Expand Down Expand Up @@ -109,7 +109,7 @@ def __init__(
self.moe_loss_weight = moe_loss_weight
self.moe_normalize_expert_weights = moe_normalize_expert_weights

for k in ["model_type", "attn_implementation", "transformers_version", "_commit_hash"]:
for k in ["model_type", "attn_implementation", "transformers_version", "_commit_hash", "torch_dtype"]:
if k in kwargs:
kwargs.pop(k)
if len(kwargs) != 0:
Expand Down
6 changes: 6 additions & 0 deletions tests/test_modeling_common.py
Original file line number Diff line number Diff line change
Expand Up @@ -331,6 +331,12 @@ def check_save_load(out1, out2):
with torch.no_grad():
second = model(**self._prepare_for_class(inputs_dict, model_class))[0]

# Save and load second time because `from_pretrained` adds a bunch of new config fields
# so we need to make sure those fields can be loaded back after saving
# Simply init as `model(config)` doesn't add those fields
model.save_pretrained(tmpdirname)
model = model_class.from_pretrained(tmpdirname)

if isinstance(first, tuple) and isinstance(second, tuple):
for tensor1, tensor2 in zip(first, second):
check_save_load(tensor1, tensor2)
Expand Down
3 changes: 2 additions & 1 deletion tests/utils/test_modeling_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -466,13 +466,14 @@ def test_model_from_config_torch_dtype_str(self):
def test_model_from_config_torch_dtype_composite(self):
"""
Test that from_pretrained works with torch_dtype being as a dict per each sub-config in composite config
Tiny-Llava has saved auto dtype as `torch.float32` for all modules.
"""
# should be able to set torch_dtype as a simple string and the model loads it correctly
model = LlavaForConditionalGeneration.from_pretrained(TINY_LLAVA, torch_dtype="float32")
self.assertEqual(model.language_model.dtype, torch.float32)
self.assertEqual(model.vision_tower.dtype, torch.float32)

model = LlavaForConditionalGeneration.from_pretrained(TINY_LLAVA, torch_dtype="float16")
model = LlavaForConditionalGeneration.from_pretrained(TINY_LLAVA, torch_dtype=torch.float16)
self.assertEqual(model.language_model.dtype, torch.float16)
self.assertEqual(model.vision_tower.dtype, torch.float16)

Expand Down

0 comments on commit b764c20

Please sign in to comment.