FabricDiffusion: High-Fidelity Texture Transfer for 3D Garments Generation from In-The-Wild Images
Cheng Zhang*, Yuanhao Wang*, Francisco Vicente Carrasco, Chenglei Wu, Jinlong Yang, Thabo Beeler, Fernando De la Torre (* indicates equal contribution)
SIGGRAPH Asia 2024
[Jan 2 2025] Inference code released.
[Oct 2 2024] Paper released to Arxiv.
Running the codebase only requires installing a recent version of PyTorch, Diffusers and Transformers:
git clone https://github.com/humansensinglab/fabric-diffusion.git
cd fabric-diffusion
conda env create --file=environment.yml
conda activate fabric-diff
1. Texture Normalization
Run the following command to normalize texture patches cropped from in-the-wild images:
python inference_texture.py \
--texture_checkpoint='Yuanhao-Harry-Wang/fabric-diffusion-texture' \
--src_dir='data/texture_examples' \
--save_dir='outputs/texture' \
--n_samples=3
--texture_checkpoint
: path to the pre-trained texture model checkpoint.--src_dir
: path to the directory containing input images.--save_dir
: path to the output directory.--n_samples
: number of samples per input.
2. Print Normalization
Similarly, run the following command to normalize print patches cropped from in-the-wild images:
python inference_print.py \
--print_checkpoint='Yuanhao-Harry-Wang/fabric-diffusion-print' \
--src_dir='data/print_examples' \
--save_dir='outputs/print' \
--n_samples=3
The model checkpoints are hosted on Huggingface here (texture, print).
We are actively adding more features to this repo. Please stay tuned!
If you find this repo useful, please cite:
@inproceedings{zhang2024fabricdiffusion,
title = {{FabricDiffusion}: High-Fidelity Texture Transfer for 3D Garments Generation from In-The-Wild Images},
author = {Zhang, Cheng and Wang, Yuanhao and Vicente Carrasco, Francisco and Wu, Chenglei and
Yang, Jinlong and Beeler, Thabo and De la Torre, Fernando},
booktitle = {ACM SIGGRAPH Asia},
year = {2024},
}
We use the X11 License. This license is identical to the MIT License, but with an extra sentence that prohibits using the copyright holders' names (Carnegie Mellon University and Google in our case) for advertising or promotional purposes without written permission.