Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Persephone dino #126

Open
wants to merge 6 commits into
base: persephone-refactor
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
13 changes: 13 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,19 @@ The full API is described in the documentation page [https://hyperion-ml.readthe

## Installation Instructions

### If you use the CLSP grid, simply run below in the root of your cloned repo (as of Aug 15 2022):
```
./prepare_egs_paths.sh
# Then, type /home/janto/usr/local/anaconda3 when "Introduce path to your conda base installation (e.g.:/usr/local/anaconda3):" is prompted
# type /home/jcho/.conda/envs/hyp_persephone_jj when "Introduce name/prefix_path for your conda environment (e.g.:hyperion)" is prompted

# You may see the two lines below but it seems okay to ignore:
# Hyperion is not installed in env
# Adding hyperion directory to the PYTHONPATH variable in the recipes.

# Also, with this, you can skip "Prerequistes to run the recipes" below
```

### Prerequisites

We use anaconda or miniconda, though you should be able to make it work in other python distributions
Expand Down
205 changes: 205 additions & 0 deletions egs/voxceleb/dinossl.v1/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,205 @@
# VoxCeleb V1.1

Recipe for the VoxCeleb Speaker Verification Task

## Differences w.r.t VoxCeleb V1 recipe

In recipe version V1:
- We compute speech augmentations and acoustic features offline and dump them to disk.
- Augmentation is performed using Kaldi scripts and wav-reverbate tool
- Babble noise is created on-the-fly when computing features by mixing 3-7 single speaker files.

In this recipe:
- We compute speech augmentations and acoustic features are computed always on-the-fly,
we don't dump any features to disk.
- Augmentation is performed using Hyperin SpeechAugment class.
- The behavior of this class is controlled
by the the configuration file `conf/reverb_noise_aug.yml`,
which mimics the proportions of noise and RIR types, and SNRs used in the V1 or the recipe.
- Babble noise is created offline by mixing 3-10 single speaker files.


## Citing

## Training Data

- x-Vector network is trained on Voxceleb2 dev + test with augmentations
- MUSAN noise
- RIR reverberation

## Test data

- Test data is VoxCeleb 1
- We evaluate 6 conditions:
- VoxCeleb-O (Original): Original Voxceleb test set with 40 speakers
- Voxceleb-O-cleaned: VoxCeleb-O cleaned-up of some errors
- VoxCeleb-E (Entire): List using all utterances of VoxCeleb1
- Voxceleb-E-cleaned: VoxCeleb-E cleaned-up of some errors
- VoxCeleb-H (Hard): List of hard trials between all utterances of VoxCeleb1, same gender and nationality trials.
- Voxceleb-H-cleaned: VoxCeleb-H cleaned-up of some errors

## Usage

- Run the run_0*.sh scripts in sequence
- By default it will use Light ResNet (16 base channels)
- For better performance use full ResNet (64 base channels) using `config_fbank80_stmn_resnet34_arcs30m0.3_adam_lr0.05_amp.v1.sh` file as
```bash
run_011_train_xvector.sh --config-file config_fbank80_stmn_resnet34_arcs30m0.3_adam_lr0.05_amp.v1.sh
run_030_extract_xvectors.sh --config-file config_fbank80_stmn_resnet34_arcs30m0.3_adam_lr0.05_amp.v1.sh --use-gpu true
run_040_eval_be.sh --config-file config_fbank80_stmn_resnet34_arcs30m0.3_adam_lr0.05_amp.v1.sh
```

- To train with mixed precision training use config file `config_fbank80_stmn_lresnet34_arcs30m0.3_adam_lr0.05_amp.v1.sh`

## Recipe Steps:

- `run_001_prepare_data.sh`
- Data preparation script to generate Kaldi style data directories for
- VoxCeleb2 train+test
- VoxCeleb1 O/E/H eval sets

- `run_002_compute_evad.sh`
- Computes Energy VAD for all datasets

- `run_003_prepare_noises_rirs.sh`
- Prepares MUSAN noises, music to be used by SpeechAugment class.
- Creates Babble noise from MUSAN speech to be used by SpeechAugment class.
- Prepares RIRs by compacting then into HDF5 files, to be used by SpeechAugment class.

- `run_010_prepare_xvec_train_data.sh`
- Transforms all the audios that we are going to use to train the x-vector into a common format, e.g., .flac.
- Removes silence from the audios
- Removes utterances shorter than 4secs and speakers with less than 8 utterances.
- Creates training and validation lists for x-vector training

- `run_011_train_xvector.sh`
- Trains the x-vector network

- `run_030_extract_xvectors.sh`
- Extracts x-vectors for VoxCeleb2 or VoxCeleb2+augmentation for PLDA training
- Exctracts x-vectors for VoxCeleb1 test sets

- `run_040_eval_be.sh`
- Trains PLDA and evals PLDA and cosine scoring back-ends


## Results

### VoxCeleb 1 Original-Clean trial list

| Config | Model Type | Model Details | Back-end | EER(%) | MinDCF(p=0.05) | MinDCF(p=0.01) |
| ------ | ---------- | ------------- | -------- | :----: | :------------: | :------------: |
| config_fbank80_stmn_lresnet34_arcs30m0.3_adam_lr0.05_amp.v1.sh | LResNet34 | ArcFace s=30/m=0.3 | PLDA | 2.00 | 0.129 | 0.216 |
| | | | Cosine | 2.04 | 0.138 | 0.210 |
| config_fbank80_stmn_resnet34_arcs30m0.3_adam_lr0.05_amp.v1.sh | ResNet34 | ArcFace s=30/m=0.3 | PLDA | 1.35 | 0.091 | 0.159 |
| | | | Cosine | 1.22 | 0.082 | 0.129 |
| config_fbank80_stmn_resnet34_arcs30m0.3_adam_lr0.05_amp_swa.v1.sh | ResNet34 | + SWA | Cosine | 1.19 | 0.074 | 0.124 |
| config_fbank80_stmn_resnet50_arcs30m0.3_adam_lr0.05_amp.v1.sh | ResNet50 | ArcFace s=30/m=0.3 | PLDA | 1.30 | 0.090 | 0.160 |
| | | | Cosine | 1.44 | 0.100 | 0.173 |
| config_fbank80_stmn_tseresnet34_arcs30m0.3_adam_lr0.05_amp.v1.sh | Time-SE-ResNet34 | ArcFace s=30/m=0.3 | PLDA | 1.23 | 0.091 | 0.143 |
| | | | Cosine | 1.17 | 0.081 | 0.110 |
| config_fbank80_stmn_effnetb4_v2_arcs30m0.3_adam_lr0.01_amp.v1.sh | EfficientNet-b4 v2 | EfficientNet-b4 with strides=1122121 <br> ArcFace s=30/m=0.3 | 1.37 | 0.104 | 0.179 |
| | | | Cosine | 1.31 | 0.080 | 0.139 |
| config_fbank80_stmn_effnetb7_v2_eina_hln_arcs30m0.3_adam_lr0.01_amp.v1.sh | EfficientNet-b7 v2 | EfficientNet-b7 with strides=1122121 <br> Instance-Norm with affine transform in Encoder <br> Layer-Norm in head <br> ArcFace s=30/m=0.3 | 1.29 | 0.088 | 0.129 |
| | | | Cosine | 1.23 | 0.083 | 0.136 |
| config_fbank80_stmn_res2net34w16s4_arcs30m0.3_adam_lr0.05_amp.v1.sh | Res2Net34 width=16x4 | ArcFace s=30/m=0.3 | PLDA | 1.20 | 0.095 | 0.156 |
| | | | Cosine | 1.29 | 0.089 | 0.146 |
| config_fbank80_stmn_res2net34w26s4_arcs30m0.3_adam_lr0.05_amp.v1.sh | Res2Net34 width=26x4 | ArcFace s=30/m=0.3 | PLDA | 1.20 | 0.084 | 0.136 |
| | | | Cosine | 1.18 | 0.078 | 0.115 |
| config_fbank80_stmn_res2net50w26s4_arcs30m0.3_adam_lr0.05_amp.v1.sh | Res2Net50 width=26x4 | ArcFace s=30/m=0.3 | PLDA | 1.11 | 0.084 | 0.145 |
| | | | Cosine | 1.12 | 0.073 | 0.131 |
| config_fbank80_stmn_seres2net50w26s4_arcs30m0.3_adam_lr0.05_amp.v1.sh | SE-Res2Net50 | se-r=16 <br> ArcFace s=30/m=0.3 | PLDA | 1.53 | 0.104 | 0.189 |
| | | | Cosine | 1.31 | 0.084 | 0.132 |
| config_fbank80_stmn_tseres2net50w26s4_arcs30m0.3_adam_lr0.05_amp.v1.sh | Time-SE-Res2Net50 | se-r=256 <br> ArcFace s=30/m=0.3 | PLDA | 0.98 | 0.066 | 0.116 |
| | | | Cosine | 1.12 | 0.071 | 0.103 |
| config_fbank80_stmn_res2net50w13s8_arcs30m0.3_adam_lr0.05_amp.v1.sh | Res2Net50 width=13x8 | ArcFace s=30/m=0.3 | PLDA | 1.05 | 0.077 | 0.123 |
| | | | Cosine | 0.96 | 0.065 | 0.110 |
| config_fbank80_stmn_res2net50w26s8_arcs30m0.3_adam_lr0.05_amp.v1.sh | Res2Net50 width=26x8 | ArcFace s=30/m=0.3 | PLDA | 1.04 | 0.071 | 0.118 |
| | | | Cosine | 0.93 | 0.067 | 0.108 |
| config_fbank80_stmn_res2net50w26s8_arcs30m0.3_adam_lr0.05_amp.v1_swa.sh | Res2Net50 width=26x8 | + SWA | PLDA | 0.90 | 0.067 | 0.118 |
| | | | Cosine | 0.85 | 0.060 | 0.094 |
| config_fbank80_stmn_spinenet49s_arcs30m0.3_adam_lr0.05_amp.v1.sh | SpineNet49S | ArcFace s=30/m=0.3 | PLDA | 1.44 | 0.102 | 0.169 |
| | | | Cosine | 1.29 | 0.084 | 0.140 |
| config_fbank80_stmn_spinenet49_arcs30m0.3_adam_lr0.05_amp.v1.sh | SpineNet49 | ArcFace s=30/m=0.3 | Cosine | 1.12 | 0.071 | 0.116 |
| config_fbank80_stmn_spine2net49_arcs30m0.3_adam_lr0.05_amp.v1.sh | Spine2Net49 | ArcFace s=30/m=0.3 | Cosine | 1.05 | 0.074 | 0.116 |
| config_fbank80_stmn_tsespine2net49_arcs30m0.3_adam_lr0.05_amp.v1.sh | Spine2Net49 | ArcFace s=30/m=0.3 | Cosine | 1.09 | 0.081 | 0.150 |


### VoxCeleb 1 Entire-Clean trial list

| Config | Model Type | Model Details | Back-end | EER(%) | MinDCF(p=0.05) | MinDCF(p=0.01) |
| ------ | ---------- | ------------- | -------- | :----: | :------------: | :------------: |
| config_fbank80_stmn_lresnet34_arcs30m0.3_adam_lr0.05_amp.v1.sh | LResNet34 | ArcFace s=30/m=0.3 | PLDA | 1.86 | 0.124 | 0.210 |
| | | | Cosine | 1.93 | 0.122 | 0.201 |
| config_fbank80_stmn_resnet34_arcs30m0.3_adam_lr0.05_amp.v1.sh | ResNet34 | ArcFace s=30/m=0.3 | PLDA | 1.43 | 0.091 | 0.159 |
| | | | Cosine | 1.24 | 0.080 | 0.136 |
| config_fbank80_stmn_resnet34_arcs30m0.3_adam_lr0.05_amp_swa.v1.sh | ResNet34 | + SWA | Cosine | 1.19 | 0.077 | 0.132 |
| config_fbank80_stmn_resnet50_arcs30m0.3_adam_lr0.05_amp.v1.sh | ResNet50 | ArcFace s=30/m=0.3 | PLDA | 1.27 | 0.084 | 0.150 |
| | | | Cosine | 1.30 | 0.082 | 0.150 |
| config_fbank80_stmn_tseresnet34_arcs30m0.3_adam_lr0.05_amp.v1.sh | Time-SE-ResNet34 | ArcFace s=30/m=0.3 | PLDA | 1.30 | 0.083 | 0.146 |
| | | | Cosine | 1.09 | 0.071 | 0.124 |
| config_fbank80_stmn_effnetb4_v2_arcs30m0.3_adam_lr0.01_amp.v1.sh | EfficientNet-b4 v2 | EfficientNet-b4 with strides=1122121 <br> ArcFace s=30/m=0.3 | 1.45 | 0.097 | 0.165 |
| | | | Cosine | 1.15 | 0.076 | 0.132 |
| config_fbank80_stmn_effnetb7_v2_eina_hln_arcs30m0.3_adam_lr0.01_amp.v1.sh | EfficientNet-b7 v2 | EfficientNet-b7 with strides=1122121 <br> Instance-Norm with affine transform in Encoder <br> Layer-Norm in head <br> ArcFace s=30/m=0.3 | 1.47 | 0.094 | 0.165 |
| | | | Cosine | 1.27 | 0.082 | 0.148 |
| config_fbank80_stmn_res2net34w16s4_arcs30m0.3_adam_lr0.05_amp.v1.sh | Res2Net34 width=16x4 | ArcFace s=30/m=0.3 | PLDA | 1.31 | 0.086 | 0.149 |
| | | | Cosine | 1.22 | 0.079 | 0.134 |
| config_fbank80_stmn_res2net34w26s4_arcs30m0.3_adam_lr0.05_amp.v1.sh | Res2Net34 width=26x4 | ArcFace s=30/m=0.3 | PLDA | 1.27 | 0.082 | 0.145 |
| | | | Cosine | 1.16 | 0.074 | 0.130 |
| config_fbank80_stmn_res2net50w26s4_arcs30m0.3_adam_lr0.05_amp.v1.sh | Res2Net50 width=26x4 | ArcFace s=30/m=0.3 | PLDA | 1.23 | 0.077 | 0.136 |
| | | | Cosine | 1.11 | 0.071 | 0.125 |
| config_fbank80_stmn_seres2net50w26s4_arcs30m0.3_adam_lr0.05_amp.v1.sh | SE-Res2Net50 | se-r=16 <br> ArcFace s=30/m=0.3 | PLDA | 1.46 | 0.097 | 0.173 |
| | | | Cosine | 1.24 | 0.080 | 0.140 |
| config_fbank80_stmn_tseres2net50w26s4_arcs30m0.3_adam_lr0.05_amp.v1.sh | Time-SE-Res2Net50 | se-r=256 <br> ArcFace s=30/m=0.3 | PLDA | 1.11 | 0.071 | 0.127 |
| | | | Cosine | 1.05 | 0.067 | 0.117 |
| config_fbank80_stmn_res2net50w13s8_arcs30m0.3_adam_lr0.05_amp.v1.sh | Res2Net50 width=13x8 | ArcFace s=30/m=0.3 | PLDA | 1.23 | 0.078 | 0.134 |
| | | | Cosine | 1.05 | 0.069 | 0.121 |
| config_fbank80_stmn_res2net50w26s8_arcs30m0.3_adam_lr0.05_amp.v1.sh | Res2Net50 width=26x8 | ArcFace s=30/m=0.3 | PLDA | 1.18 | 0.075 | 0.131 |
| | | | Cosine | 0.98 | 0.063 | 0.110 |
| config_fbank80_stmn_res2net50w26s8_arcs30m0.3_adam_lr0.05_amp_swa.v1.sh | Res2Net50 width=26x8 | + SWA | PLDA | 1.17 | 0.072 | 0.123 |
| | | | Cosine | 0.94 | 0.061 | 0.107 |
| config_fbank80_stmn_spinenet49s_arcs30m0.3_adam_lr0.05_amp.v1.sh | SpineNet49S | ArcFace s=30/m=0.3 | PLDA | 1.56 | 0.095 | 0.166 |
| | | | Cosine | 1.27 | 0.079 | 0.142 |
| config_fbank80_stmn_spinenet49_arcs30m0.3_adam_lr0.05_amp.v1.sh | SpineNet49 | ArcFace s=30/m=0.3 | Cosine | 1.19 | 0.077 | 0.137 |
| config_fbank80_stmn_spine2net49_arcs30m0.3_adam_lr0.05_amp.v1.sh | Spine2Net49 | ArcFace s=30/m=0.3 | Cosine | 1.12 | 0.073 | 0.129 |
| config_fbank80_stmn_tsespine2net49_arcs30m0.3_adam_lr0.05_amp.v1.sh | TSE-Spine2Net49 | ArcFace s=30/m=0.3 | Cosine | 1.05 | 0.068 | 0.120 |


### VoxCeleb 1 Hard-Clean trial list

| Config | Model Type | Model Details | Back-end | EER(%) | MinDCF(p=0.05) | MinDCF(p=0.01) |
| ------ | ---------- | ------------- | -------- | :----: | :------------: | :------------: |
| config_fbank80_stmn_lresnet34_arcs30m0.3_adam_lr0.05_amp.v1.sh | LResNet34 | ArcFace s=30/m=0.3 | PLDA | 3.29 | 0.195 | 0.318 |
| | | | Cosine | 3.27 | 0.188 | 0.303 |
| config_fbank80_stmn_resnet34_arcs30m0.3_adam_lr0.05_amp.v1.sh | ResNet34 | ArcFace s=30/m=0.3 | PLDA | 2.66 | 0.160 | 0.258 |
| | | | Cosine | 2.32 | 0.139 | 0.232 |
| config_fbank80_stmn_resnet34_arcs30m0.3_adam_lr0.05_amp_swa.v1.sh | ResNet34 | + SWA | Cosine | 2.19 | 0.133 | 0.215 |
| config_fbank80_stmn_resnet50_arcs30m0.3_adam_lr0.05_amp.v1.sh | ResNet50 | ArcFace s=30/m=0.3 | PLDA | 2.33 | 0.139 | 0.227 |
| | | | Cosine | 2.33 | 0.142 | 0.235 |
| config_fbank80_stmn_tseresnet34_arcs30m0.3_adam_lr0.05_amp.v1.sh | Time-SE-ResNet34 | ArcFace s=30/m=0.3 | PLDA | 2.46 | 0.142 | 0.237 |
| | | | Cosine | 2.14 | 0.126 | 0.203 |
| config_fbank80_stmn_effnetb4_v2_arcs30m0.3_adam_lr0.01_amp.v1.sh | EfficientNet-b4 v2 | EfficientNet-b4 with strides=1122121 <br> ArcFace s=30/m=0.3 | 2.57 | 0.153 | 0.255 |
| | | | Cosine | 2.11 | 0.127 | 0.205 |
| config_fbank80_stmn_effnetb7_v2_eina_hln_arcs30m0.3_adam_lr0.01_amp.v1.sh | EfficientNet-b7 v2 | EfficientNet-b7 with strides=1122121 <br> Instance-Norm with affine transform in Encoder <br> Layer-Norm in head <br> ArcFace s=30/m=0.3 | 2.64 | 0.157 | 0.244 |
| | | | Cosine | 2.33 | 0.141 | 0.232 |
| config_fbank80_stmn_res2net34w16s4_arcs30m0.3_adam_lr0.05_amp.v1.sh | Res2Net34 width=16x4 | ArcFace s=30/m=0.3 | PLDA | 2.42 | 0.144 | 0.245 |
| | | | Cosine | 2.26 | 0.133 | 0.224
| config_fbank80_stmn_res2net34w26s4_arcs30m0.3_adam_lr0.05_amp.v1.sh | Res2Net34 width=26x4 | ArcFace s=30/m=0.3 | PLDA | 2.39 | 0.141 | 0.235 |
| | | | Cosine | 2.17 | 0.128 | 0.215
| config_fbank80_stmn_res2net50w26s4_arcs30m0.3_adam_lr0.05_amp.v1.sh | Res2Net50 width=26x4 | ArcFace s=30/m=0.3 | PLDA | 2.28 | 0.131 | 0.225 |
| | | | Cosine | 2.11 | 0.124 | 0.204 |
| config_fbank80_stmn_seres2net50w26s4_arcs30m0.3_adam_lr0.05_amp.v1.sh | SE-Res2Net50 | se-r=16 <br> ArcFace s=30/m=0.3 | PLDA | 2.77 | 0.172 | 0.271 |
| | | | Cosine | 2.45 | 0.141 | 0.225 |
| config_fbank80_stmn_tseres2net50w26s4_arcs30m0.3_adam_lr0.05_amp.v1.sh | Time-SE-Res2Net50 | se-r=256 <br> ArcFace s=30/m=0.3 | PLDA | 2.07 | 0.124 | 0.201 |
| | | | Cosine | 1.95 | 0.113 | 0.181 |
| config_fbank80_stmn_res2net50w13s8_arcs30m0.3_adam_lr0.05_amp.v1.sh | Res2Net50 width=13x8 | ArcFace s=30/m=0.3 | PLDA | 2.34 | 0.136 | 0.230 |
| | | | Cosine | 1.99 | 0.119 | 0.196 |
| config_fbank80_stmn_res2net50w26s8_arcs30m0.3_adam_lr0.05_amp.v1.sh | Res2Net50 width=26x8 | ArcFace s=30/m=0.3 | PLDA | 2.18 | 0.127 | 0.211 |
| | | | Cosine | 1.89 | 0.112 | 0.184 |
| config_fbank80_stmn_res2net50w26s8_arcs30m0.3_adam_lr0.05_amp.v1_swa.sh | Res2Net50 width=26x8 | + SWA | PLDA | 2.14 | 0.125 | 0.209 |
| | | | Cosine | 1.84 | 0.110 | 0.186 |
| config_fbank80_stmn_spinenet49s_arcs30m0.3_adam_lr0.05_amp.v1.sh | SpineNet49S | ArcFace s=30/m=0.3 | PLDA | 2.78 | 0.156 | 0.252 |
| | | | Cosine | 2.26 | 0.134 | 0.214 |
| config_fbank80_stmn_spinenet49_arcs30m0.3_adam_lr0.05_amp.v1.sh | SpineNet49 | ArcFace s=30/m=0.3 | Cosine | 2.24 | 0.134 | 0.221 |
| config_fbank80_stmn_spine2net49_arcs30m0.3_adam_lr0.05_amp.v1.sh | Spine2Net49 | ArcFace s=30/m=0.3 | Cosine | 2.20 | 0.132 | 0.219 |
| config_fbank80_stmn_tsespine2net49_arcs30m0.3_adam_lr0.05_amp.v1.sh | Spine2Net49 | ArcFace s=30/m=0.3 | Cosine | 2.02 | 0.123 | 0.203 |
28 changes: 28 additions & 0 deletions egs/voxceleb/dinossl.v1/cmd.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
# you can change cmd.sh depending on what type of queue you are using.
# If you have no queueing system and want to run on a local machine, you
# can change all instances 'queue.pl' to run.pl (but be careful and run
# commands one by one: most recipes will exhaust the memory on your
# machine). queue.pl works with GridEngine (qsub). slurm.pl works
# with slurm. Different queues are configured differently, with different
# queue names and different ways of specifying things like memory;
# to account for these differences you can create and edit the file
# conf/queue.conf to match your queue's configuration. Search for
# conf/queue.conf in http://kaldi-asr.org/doc/queue.html for more information,
# or search for the string 'default_config' in utils/queue.pl or utils/slurm.pl.

if [ "$(hostname -d)" == "cm.gemini" ];then
#export train_cmd="queue.pl --config conf/coe_gpu_short.conf --mem 4G"
export train_cmd="queue.pl --config conf/coe_gpu_long.conf --mem 4G"
export cuda_cmd="queue.pl --config conf/coe_gpu_long.conf --mem 20G"
#export cuda_cmd="queue.pl --config conf/coe_gpu_v100.conf --mem 20G"
export cuda_cmd="queue.pl --config conf/coe_gpu_rtx.conf --mem 40G"
export cuda_eval_cmd="queue.pl --config conf/coe_gpu_short.conf --mem 4G"
# export cuda_eval_cmd="queue.pl --config conf/coe_gpu_long.conf --mem 4G"
else
export train_cmd="queue.pl --mem 4G -l hostname=\"[bc][01]*\" -V"
export cuda_cmd="queue.pl --mem 20G -l hostname=\"c[01]*\" -V"
export cuda_eval_cmd="$train_cmd"
fi



11 changes: 11 additions & 0 deletions egs/voxceleb/dinossl.v1/conf/clsp.conf
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@

# Default configuration
command qsub -v PATH -cwd -S /bin/bash -j y -l arch=*64* -V
option mem=* -l mem_free=$0,ram_free=$0
option mem=0 # Do not add anything to qsub_opts
option num_threads=* -pe smp $0
option num_threads=1 # Do not add anything to qsub_opts
option max_jobs_run=* -tc $0
default gpu=0
option gpu=0 -l 'hostname=b[1]*|c0[123456789]*|c1[134679]*|c2[1357]*'
option gpu=* -l 'hostname=c0[123456789]*|c1[1345679]*|c2[12357]*,gpu=$0'
11 changes: 11 additions & 0 deletions egs/voxceleb/dinossl.v1/conf/coe_gpu_bigmem.conf
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@

# Default configuration
command qsub -v PATH -cwd -S /bin/bash -j y -sync y -l arch=*64* -V
option mem=* -l mem_free=$0
option mem=0 # Do not add anything to qsub_opts
option num_threads=* -l num_proc=$0
option num_threads=1 # Do not add anything to qsub_opts
option max_jobs_run=* -tc $0
default gpu=0
option gpu=0 -q all.q -l h_rt=100:00:00 -l hostname=r[2-7]*
option gpu=* -l gpu=$0,h_rt=500:00:00 -q gpu.q -l hostname=r[237]n[01][0123456789]*
13 changes: 13 additions & 0 deletions egs/voxceleb/dinossl.v1/conf/coe_gpu_long.conf
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@

# Default configuration
command qsub -v PATH -cwd -S /bin/bash -j y -sync y -l arch=*64* -V
option mem=* -l mem_free=$0
option mem=0 # Do not add anything to qsub_opts
option num_threads=* -l num_proc=$0
option num_threads=1 # Do not add anything to qsub_opts
option max_jobs_run=* -tc $0
default gpu=0
option gpu=0 -q all.q -l h_rt=100:00:00 -l hostname=r[1-9]*
option gpu=* -l gpu=$0,h_rt=500:00:00 -q gpu.q -l hostname=r[1-9]*


11 changes: 11 additions & 0 deletions egs/voxceleb/dinossl.v1/conf/coe_gpu_rtx.conf
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@

# Default configuration
command qsub -v PATH -cwd -S /bin/bash -j y -sync y -l arch=*64* -V
option mem=* -l mem_free=$0
option mem=0 # Do not add anything to qsub_opts
option num_threads=* -l num_proc=$0
option num_threads=1 # Do not add anything to qsub_opts
option max_jobs_run=* -tc $0
default gpu=0
option gpu=0 -q all.q -l h_rt=100:00:00
option gpu=* -l gpu=$0,h_rt=500:00:00 -q gpu.q@@rtx
11 changes: 11 additions & 0 deletions egs/voxceleb/dinossl.v1/conf/coe_gpu_short.conf
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@

# Default configuration
command qsub -v PATH -cwd -S /bin/bash -j y -sync y -l arch=*64* -V
option mem=* -l mem_free=$0
option mem=0 # Do not add anything to qsub_opts
option num_threads=* -l num_proc=$0
option num_threads=1 # Do not add anything to qsub_opts
option max_jobs_run=* -tc $0
default gpu=0
option gpu=0 -q all.q -l h_rt=100:00:00 -l hostname=r[1-9]*
option gpu=* -l gpu=$0,h_rt=00:59:00 -q gpu_short.q -l hostname=r[17]*
11 changes: 11 additions & 0 deletions egs/voxceleb/dinossl.v1/conf/coe_gpu_v100.conf
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@

# Default configuration
command qsub -v PATH -cwd -S /bin/bash -j y -sync y -l arch=*64* -V
option mem=* -l mem_free=$0
option mem=0 # Do not add anything to qsub_opts
option num_threads=* -l num_proc=$0
option num_threads=1 # Do not add anything to qsub_opts
option max_jobs_run=* -tc $0
default gpu=0
option gpu=0 -q all.q -l h_rt=100:00:00
option gpu=* -l gpu=$0,h_rt=500:00:00 -q gpu.q@@v100
12 changes: 12 additions & 0 deletions egs/voxceleb/dinossl.v1/conf/dinossl_tuning/fbank80_stmn_16k.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
audio_feats:
audio_feat: logfb
sample_frequency: 16000
frame_length: 25
low_freq: 20
high_freq: 7600
num_filters: 80
snip_edges: false
use_energy: false
mvn:
context: 150
norm_var: false
Loading