Skip to content

hypertidy/geodist

Repository files navigation

R build status pkgcheck Project Status: Active – The project has reached a stable, usable state and is being actively developed. codecov CRAN_Status_Badge downloads

geodist

An ultra-lightweight, zero-dependency package for very fast calculation of geodesic distances. Main eponymous function, geodist(), accepts only one or two primary arguments, which must be rectangular objects with unambiguously labelled longitude and latitude columns (that is, some variant of lon/lat, or x/y).

n <- 50
x <- cbind (-10 + 20 * runif (n), -10 + 20 * runif (n))
y <- cbind (-10 + 20 * runif (2 * n), -10 + 20 * runif (2 * n))
colnames (x) <- colnames (y) <- c ("x", "y")
d0 <- geodist (x) # A 50-by-50 matrix
d1 <- geodist (x, y) # A 50-by-100 matrix
d2 <- geodist (x, sequential = TRUE) # Vector of length 49
d2 <- geodist (x, sequential = TRUE, pad = TRUE) # Vector of length 50

Installation

You can install latest stable version of geodist from CRAN with:

install.packages ("geodist") # current CRAN version

Alternatively, current development versions can be installed using any of the following options:

# install.packages("remotes")
remotes::install_git ("https://git.sr.ht/~mpadge/geodist")
remotes::install_git ("https://codeberg.org/hypertidy/geodist")
remotes::install_bitbucket ("hypertidy/geodist")
remotes::install_gitlab ("hypertidy/geodist")
remotes::install_github ("hypertidy/geodist")

Then load with

library (geodist)
packageVersion ("geodist")
#> [1] '0.1.0.6'

Detailed Usage

Input(s) to the geodist() function can be in arbitrary rectangular format.

n <- 1e1
x <- tibble::tibble (
    x = -180 + 360 * runif (n),
    y = -90 + 180 * runif (n)
)
dim (geodist (x, measure = "haversine"))
#> [1] 10 10
y <- tibble::tibble (
    x = -180 + 360 * runif (2 * n),
    y = -90 + 180 * runif (2 * n)
)
dim (geodist (x, y, measure = "haversine"))
#> [1] 10 20
x <- cbind (
    -180 + 360 * runif (n),
    -90 + 100 * runif (n),
    seq (n), runif (n)
)
colnames (x) <- c ("lon", "lat", "a", "b")
dim (geodist (x, measure = "haversine"))
#> [1] 10 10

All outputs are distances in metres, calculated with a variety of spherical and elliptical distance measures. Distance measures currently implemented are Haversine, Vincenty (spherical and elliptical)), the very fast mapbox cheap ruler (see their blog post), and the “reference” implementation of Karney (2013), as implemented in the package sf. (Note that geodist does not accept sf-format objects; the sf package itself should be used for that.) The mapbox cheap ruler algorithm is intended to provide approximate yet very fast distance calculations within small areas (tens to a few hundred kilometres across).

Benchmarks of geodesic accuracy

The geodist_benchmark() function - the only other function provided by the geodist package - compares the accuracy of the different metrics to the nanometre-accuracy standard of Karney (2013).

geodist_benchmark (lat = 30, d = 1000)
#>            haversine    vincenty      cheap
#> absolute 0.818681120 0.818681120 0.57910408
#> relative 0.002173428 0.002173428 0.00160801

All distances (d) are in metres, and all measures are accurate to within 1m over distances out to several km (at the chosen latitude of 30 degrees). The following plots compare the absolute and relative accuracies of the different distance measures implemented here. The mapbox cheap ruler algorithm is the most accurate for distances out to around 100km, beyond which it becomes extremely inaccurate. Average relative errors of Vincenty distances remain generally constant at around 0.2%, while relative errors of cheap-ruler distances out to 100km are around 0.16%.

Performance comparison

The following code demonstrates the relative speed advantages of the different distance measures implemented in the geodist package.

n <- 1e3
dx <- dy <- 0.01
x <- cbind (-100 + dx * runif (n), 20 + dy * runif (n))
y <- cbind (-100 + dx * runif (2 * n), 20 + dy * runif (2 * n))
colnames (x) <- colnames (y) <- c ("x", "y")
rbenchmark::benchmark (
    replications = 10, order = "test",
    d1 <- geodist (x, measure = "cheap"),
    d2 <- geodist (x, measure = "haversine"),
    d3 <- geodist (x, measure = "vincenty"),
    d4 <- geodist (x, measure = "geodesic")
) [, 1:4]
#>                                      test replications elapsed relative
#> 1     d1 <- geodist(x, measure = "cheap")           10   0.070      1.0
#> 2 d2 <- geodist(x, measure = "haversine")           10   0.133      1.9
#> 3  d3 <- geodist(x, measure = "vincenty")           10   0.224      3.2
#> 4  d4 <- geodist(x, measure = "geodesic")           10   2.856     40.8

Geodesic distance calculation is available in the sf package. Comparing computation speeds requires conversion of sets of numeric lon-lat points to sf form with the following code:

x_to_sf <- function (x) {
    sapply (seq_len (nrow (x)), function (i) {
        sf::st_point (x [i, ]) |>
            sf::st_sfc ()
    }) |>
        sf::st_sfc (crs = 4326)
}

Distances in sf are by default calculated via s2::s2_distance(), with alternative calculations using the same geodesic algorithm as here.

n <- 1e2
x <- cbind (-180 + 360 * runif (n), -90 + 180 * runif (n))
colnames (x) <- c ("x", "y")
xsf <- x_to_sf (x)
sf_dist <- function (xsf, s2 = TRUE) {
    if (s2) {
        sf::sf_use_s2 (TRUE) # s2::s2_distance()
    } else {
        sf::sf_use_s2 (FALSE) # Karney's geodesic algorithm
    }
    sf::st_distance (xsf, xsf)
}
geo_dist <- function (x) geodist (x, measure = "geodesic")
rbenchmark::benchmark (
    replications = 10, order = "test",
    sf_dist (xsf, s2 = TRUE),
    sf_dist (xsf, s2 = FALSE),
    geo_dist (x)
) [, 1:4]
#> Spherical geometry (s2) switched off
#> Linking to GEOS 3.13.0, GDAL 3.10.0, PROJ 9.5.0; sf_use_s2() is FALSE
#> Spherical geometry (s2) switched on
#> Spherical geometry (s2) switched off
#>                       test replications elapsed relative
#> 3              geo_dist(x)           10   0.062    1.000
#> 2 sf_dist(xsf, s2 = FALSE)           10   0.207    3.339
#> 1  sf_dist(xsf, s2 = TRUE)           10   0.146    2.355

The geosphere package also offers sequential calculation which is benchmarked with the following code:

fgeodist <- function () geodist (x, measure = "vincenty", sequential = TRUE)
fgeosph <- function () geosphere::distVincentySphere (x)
rbenchmark::benchmark (
    replications = 10, order = "test",
    fgeodist (),
    fgeosph ()
) [, 1:4]
#>         test replications elapsed relative
#> 1 fgeodist()           10   0.017    1.000
#> 2  fgeosph()           10   0.037    2.176

geodist is thus at least twice as fast as both sf for highly accurate geodesic distance calculations, and geosphere for calculation of sequential distances.

Contributors

All contributions to this project are gratefully acknowledged using the allcontributors package following the allcontributors specification. Contributions of any kind are welcome!

Code


mpadge

jlacko

mdsumner

daniellemccool

kadyb

olivroy

Issue Authors


edzer

marcosci

mem48

dcooley

Robinlovelace

espinielli

Maschette

Issue Contributors


njtierney

mkuehn10

asardaes