Fonte: Global Health - a Data Science Iniciative
- Clone o repositório
git clone https://github.com/irenacosta/monkeypoxPySpark.git
Disponibilizado pela Global Health, o dataset foi atualizado até 22 de setembro de 2022, data em que o projeto de tabular com detalhes dados mundiais da epidemia de Monkeypox completou 100 dias e foi paralisado.
monkeypoxdf.printSchema()
col = len(monkeypoxdf.columns)
col
row = monkeypoxdf.count()
row
print(f'A dimensão do Dataframe é: {(row,col)}')
print(f'O Dataframe possui o total de {row} linhas e {col} colunas')
A dimensão do Dataframe é: (69639, 36)
O Dataframe possui o total de 69639 linhas e 36 colunas
📋 Panorama geral do estado da arte das principais colunas dataframe (Status, País, Idade, Sexo e Sintomas):
monkeypoxdf.agg(
f.count('Status').alias('Status_count'),
f.countDistinct('Status').alias('Status_distinct'),
f.count('Country').alias('Country_count'),
f.countDistinct('Country').alias('Country_distinct'),
f.count('Age').alias('Age_count'),
f.countDistinct('Age').alias('Age_distinct'),
f.count('Gender').alias('Gender_count'),
f.countDistinct('Gender').alias('Gender_distinct'),
f.count('Symptoms').alias('Symptoms_count'),
f.countDistinct('Symptoms').alias('Symptoms_distinct')
).show()
monkeypoxdf.groupBy("Status").agg(countDistinct('Country')) \
.show(truncate=False)
monkeypoxdf.groupBy("Status").agg(countDistinct('Age')) \
.show(truncate=False)
monkeypoxdf.groupBy("Status").agg(countDistinct('Gender')) \
.show(truncate=False)
monkeypoxPivotSA = monkeypoxdf.groupBy("Symptoms").pivot("Age").count().show()
monkeypoxPivotSA
monkeypoxPivotSG = monkeypoxdf.groupBy("Symptoms").pivot("Gender").count().show()
monkeypoxPivotSG
monkeypoxPivot = monkeypoxdf.groupBy("Country").pivot("Gender").count().show()
monkeypoxPivot
df2 = monkeypoxdf.withColumn("Sexo+Idade",create_map(
lit("Gender"),col("Gender"),
lit("Age"),col("Age")
)).drop("Gender","Age") \
.withColumn("Sintomas+Hospitalizado+Isolado",create_map(
lit("Symptoms"),col("Symptoms"),
lit("Hospitalised (Y/N/NA)"),col("Hospitalised (Y/N/NA)"),
lit("Isolated (Y/N/NA)"),col("Isolated (Y/N/NA)")
)).drop("Symptoms","Hospitalised (Y/N/NA)","Isolated (Y/N/NA)") \
.withColumn("Viajou?+Local_visitado",create_map(
lit("Travel_history (Y/N/NA)"), col("Travel_history (Y/N/NA)"),
lit("Travel_history_location"), col("Travel_history_location"),
lit("Travel_history_country"), col("Travel_history_country")
)).drop("Country_ISO3","Date_onset","Travel_history (Y/N/NA)","Travel_history_location","Travel_history_country") \
.drop("Date_hospitalisation","Date_isolation","Outcome","Contact_comment","Contact_ID","Contact_location",
"Travel_history_entry","Travel_history_start", \
"Genomics_Metadata","Confirmation_method","Source","Source_II","Source_III","Source_IV","Source_V",
"Source_VI","Source_VII","Date_entry","Date_death","Date_last_modified")
df2.printSchema()
df2.show(truncate=False)
from pyspark.sql.functions import datediff,col
monkeypoxDatedif = monkeypoxdf.withColumn("Diferenca_em_dias", datediff(col("Date_confirmation"),col("Date_onset"))) \
.drop("Symptoms","Hospitalised (Y/N/NA)","Isolated (Y/N/NA)","Travel_history (Y/N/NA)","Travel_history_location", \
"Travel_history_country","Date_hospitalisation","Date_isolation","Outcome","Contact_comment", \
"Contact_ID","Contact_location","Travel_history_entry","Travel_history_start", \
"Genomics_Metadata","Confirmation_method","Source","Source_II","Source_III", \
"Source_IV","Source_V","Source_VI","Source_VII","Date_entry","Date_death","Date_last_modified").show(truncate=False)
monkeypoxDatedif
monkeypoxdf.createOrReplaceTempView("MonkeypoxRank1")
spark.sql("select Country, count(Status) as count_Status from MonkeypoxRank1 " +
"group by Country having count_Status >= 1 " +
"order by count_Status desc").show(20)
monkeypoxFaixa = spark.createDataFrame([("Crianças","0 a 12 anos"),("Adolescentes","13 a 19 anos"),
("Adultos","20 a 95 anos")],["Classificação","Faixa etária"])
monkeypoxFaixa.show()
monkeypoxdf.createOrReplaceTempView("MonkeypoxAgeRank")
spark.sql("select Age, count(Country) as count_Age from MonkeypoxAgeRank " +
"group by Age having count_Age >= 1 " +
"order by count_Age desc").show(20)
Faixa etária adotada seguindo a prática de classificaçao etária em estudos científicos com dados de doenças x idade em datasets que apresentam inconsistência na catalogação dos registros da idade de pacientes
- O dataset traz uma porcentagem muito elevada de atributos nulos nas principais colunas;
- Optou-se por incluir a característica presença do vazio no processo de análise das informações contidas em colunas-chave do dataframe;
- Não se pode afirmar se a população de casos do vírus acontece mais entre homens ou mulheres pois 96,4% da coluna Gender apresenta-se com informação vazia.
newmonkeypoxdf_Null1=["Status", "Localizacao", "Cidade", "Pais", "Cod_ISO3","Idade", "Sexo", "Sintomas","Hospitalizado","Viajou"]
newmonkeypoxdf1.select([count(when(isnan(c) | col(c).isNull(), c)).alias(c) for c in newmonkeypoxdf_Null1]).show()
Gráfico em linha mostrando o nível de altura do vazio em todas as colunas do dataframe:
Gráfico em barra mostrando a altura do vazio em todas as colunas do dataframe:
Gráfico em linha mostrando o nível de altura das principais colunas do dataframe:
monkeypoxAgedf1 = [{"id":"1","Faixa_etaria":"null","Classificacao":"null","Quantidade":66574},
{"id":"2","Faixa_etaria":"20-69","Classificacao":"adulto","Quantidade":616},
{"id":"3","Faixa_etaria":"15-64","Classificacao":"indeterminado","Quantidade":275},
{"id":"4","Faixa_etaria":"15-64","Classificacao":"indeterminado","Quantidade":275},
{"id":"5","Faixa_etaria":"20-59","Classificacao":"adulto","Quantidade":244},
{"id":"6","Faixa_etaria":"15-74","Classificacao":"indeterminado","Quantidade":240},
{"id":"7","Faixa_etaria":"20-64","Classificacao":"adulto","Quantidade":225},
{"id":"8","Faixa_etaria":"15-84","Classificacao":"indeterminado","Quantidade":187},
{"id":"9","Faixa_etaria":"15-69","Classificacao":"indeterminado","Quantidade":184},
{"id":"10","Faixa_etaria":"30-34","Classificacao":"adulto","Quantidade":75},
{"id":"11","Faixa_etaria":"20-44","Classificacao":"adulto","Quantidade":60},
{"id":"12","Faixa_etaria":"25-29","Classificacao":"adulto","Quantidade":58},
{"id":"13","Faixa_etaria":"20-99","Classificacao":"adulto","Quantidade":57},
{"id":"14","Faixa_etaria":"0-69","Classificacao":"indeterminado","Quantidade":54},
{"id":"15","Faixa_etaria":"35-39","Classificacao":"adulto","Quantidade":46},
{"id":"16","Faixa_etaria":"18-61","Classificacao":"indeterminado","Quantidade":44},
{"id":"17","Faixa_etaria":"40-44","Classificacao":"adulto","Quantidade":42},
{"id":"18","Faixa_etaria":"1-69","Classificacao":"indeterminado","Quantidade":37},
{"id":"19","Faixa_etaria":"19-59","Classificacao":"indeterminado","Quantidade":36},
{"id":"20","Faixa_etaria":"0-59","Classificacao":"indeterminado","Quantidade":34},
{"id":"21","Faixa_etaria":"23-50","Classificacao":"adulto","Quantidade":32}]
monkeypoxAgedf1 = spark.createDataFrame(monkeypoxAgedf1)
monkeypoxAgedf1.groupBy('Classificacao').sum('Quantidade').show(20)
monkeypoxdf.createOrReplaceTempView("MonkeypoxRank3")
spark.sql(
"""SELECT Gender,
Count(Country) AS total_Sexo
FROM MonkeypoxRank3
GROUP BY Gender
ORDER BY Count(Country) DESC"""
).show()
monkeypoxGender5=spark.createDataFrame([("67120","2442","33")],["Null","male","female"])
monkeypoxGender5.show()
monkeypoxdf.createOrReplaceTempView("MonkeypoxRank4")
spark.sql("select Symptoms, count(Country) as count_Country from MonkeypoxRank4 " +
"group by Symptoms having count_Country >= 1 " +
"order by count_Country desc").show(10)
monkeypoxSymptoms3=spark.createDataFrame([("1","None","None","69375"),("2","genital ulcer lesions","Genitália","30"),
("3","oral ulcer","Boca","17"),("4","genital ulcers","Genitália","17"),("5","fever","Febre","17"),
("6","ulcerative lesions","Pele","16"),("7","rash","Pele","13"),("8","skin lesions","Pele","7"),
("9","skin lesions","Pele","5"),("10","ulcerative lesions","Pele","5"),("11","vesicular rash","Pele","5"),
("12","genital ulcers", "Genitália","5"),("13","fever","Febre","4"),("14","skin lesions","Pele","4")],
["ID","Sintoma","Grupo_Sintoma","Total_Grupo_Sintoma"])
monkeypoxSymptoms3.show()
MIT License
Copyright (c), 2022. IRENA OLIVEIRA DA COSTA.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.