Skip to content

A Kafka wrapper class around FastAPI to create consumers as endpoints.

License

Notifications You must be signed in to change notification settings

ivanovmg/fastapi-kafka

 
 

Repository files navigation

FastAPI Kafka

This package is a wrapper around the well-known FastAPI framework for introducing Kafka consumers as routes. No core FastAPI functionality has been altered and the documentation can be found here.

Inspiration for this package comes from working on a NestJS API using KafkaJS where kafka consumer topics are defined as controllers. It's a very convenient pattern to work with.

New project so definitely more work to be done, contributions welcome.

Installation

Install FastAPI Kafka with pip

  pip install fastapi_kafka

Usage/Examples

Under the hood FastAPI Kafka uses AIOKafka to create a consumer. You define a consumer with the following, it matches the exact class inputs that AIOKafkaConsumer uses:

class KafkaConsumerConfig:
    loop: Optional[asyncio.AbstractEventLoop] = None
    bootstrap_servers: str = "localhost"
    client_id: Optional[str] = None
    group_id: Optional[str] = None
    group_instance_id: Optional[str] = None
    key_deserializer: Optional[Any] = None
    value_deserializer: Optional[Any] = None
    fetch_max_wait_ms: int = 500
    fetch_max_bytes: int = 52428800  # 50 MB
    fetch_min_bytes: int = 1
    max_partition_fetch_bytes: int = 1 * 1024 * 1024  # 1 MB
    request_timeout_ms: int = 40 * 1000  # 40 seconds
    retry_backoff_ms: int = 100
    auto_offset_reset: str = "latest"
    enable_auto_commit: bool = True
    auto_commit_interval_ms: int = 5000
    check_crcs: bool = True
    metadata_max_age_ms: int = 5 * 60 * 1000  # 5 minutes
    partition_assignment_strategy: tuple[Any, ...] = (RoundRobinPartitionAssignor,)
    max_poll_interval_ms: int = 300000  # 5 minutes
    rebalance_timeout_ms: Optional[int] = None
    session_timeout_ms: int = 10000  # 10 seconds
    heartbeat_interval_ms: int = 3000  # 3 seconds
    consumer_timeout_ms: int = 200  # 200 ms
    max_poll_records: Optional[int] = None
    ssl_context: Optional[ssl.SSLContext] = None
    security_protocol: str = "PLAINTEXT"
    api_version: str = "auto"
    exclude_internal_topics: bool = True
    connections_max_idle_ms: int = 540000  # 9 minutes
    isolation_level: str = "read_uncommitted"
    sasl_mechanism: str = "PLAIN"
    sasl_plain_password: Optional[str] = None
    sasl_plain_username: Optional[str] = None
    sasl_kerberos_service_name: str = "kafka"
    sasl_kerberos_domain_name: Optional[str] = None
    sasl_oauth_token_provider: Optional[Any] = None

Simple Example

Here's a full example running a local kafka server:

from typing import Any

from pydantic import BaseModel

from fastapi_kafka import FastAPIKafka
from fastapi_kafka.consumer import KafkaConsumerConfig


class SomeMessage(BaseModel):
    test: str


app = FastAPIKafka(
    kafka_consumer_config=KafkaConsumerConfig(
        bootstrap_servers="localhost:9092"
    )
)


@app.get("/")
def read_root():
    return {"Hello": "World"}


@app.consumer("test-topic")
async def read_item(item: Any):
    return item


@app.consumer("test-topic-model")
async def read_item_model(item: SomeMessage):
    return item

The FastAPIKafka can accept all standard constructor inputs as well.

To define a consumer topic you use @app.consumer("<topic name>"), you can define a kafka message as Any and it will return a UTF-8 decoded message when reading the item.

If you use JSON messages you can define a pydantic model to read it much the same as a regular http route, the message will be transformed into an instance of that model.

More Advanced Example (Using Upstash Kafka)

from typing import Any
from uuid import uuid4

from pydantic import BaseModel

from fastapi_kafka import FastAPIKafka, create_ssl_context
from fastapi_kafka.consumer import KafkaConsumerConfig


class SomeMessage(BaseModel):
    test: str


consumer_config = KafkaConsumerConfig(
    bootstrap_servers='example-us1-kafka.upstash.io:9092',
    sasl_mechanism='SCRAM-SHA-256',
    security_protocol='SASL_SSL',
    ssl_context=create_ssl_context(),
    sasl_plain_username='xxx',
    sasl_plain_password='xxx',
    client_id=f'consumer-{uuid4()}',
    group_id='consumer-group-api',
    auto_offset_reset='earliest',
)

app = FastAPIKafka(kafka_consumer_config=consumer_config)


@app.get("/")
def read_root():
    return {"Hello": "World"}


@app.consumer("test-topic")
async def read_item(item: Any):
    return item


@app.consumer("test-topic-model")
async def read_item_model(item: SomeMessage):
    return item

For security_protocol using SASL_SSL you must pass in a create_ssl_context().

For even more advanced configuration such as defining your own certificates, more information can be found here: AIOKafka SSL.

FastAPI Lifespan

One material change that was made to FastAPI was how Lifespan works. FastAPI Kafka initializes the Lifespan automatically to create the defined Kafka consumer, if you need additional start-up/shutdown behavior you can use the startup_functions or shutdown_functions when initializing the FastAPIKafka instance.

The startup_functions or shutdown_functions fields accept a list of synchronous or asynchronous functions to be executed before/after the yield in lifespan.

async def my_startup_actions():
    await do_something()
    do_something_sync()

async def my_shutdown_actions():
    await do_something_on_shutdown()

app = FastAPIKafka(
    kafka_consumer_config=consumer_config,
    startup_functions=[my_startup_actions],
    shutdown_functions=[my_shutdown_actions]
)

Acknowledgements

Building upon the awesome FastAPI framework.

About

A Kafka wrapper class around FastAPI to create consumers as endpoints.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 95.7%
  • Shell 2.7%
  • Makefile 1.6%