Skip to content

Commit

Permalink
Make a small change to readme, make sure full_batch W2 doesn't crash …
Browse files Browse the repository at this point in the history
…things with tons of samples, and fix some logging
  • Loading branch information
jarridrb committed Jan 28, 2025
1 parent 3b4d705 commit 6072dda
Show file tree
Hide file tree
Showing 3 changed files with 27 additions and 8 deletions.
5 changes: 4 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,10 @@ python dem/eval.py experiment=lj55_idem ckpt_path=<path_to_ckpt>
```

This will take some time to run and will generate a file named `samples_<n_samples_to_generate>.pt` in the hydra
runtime directory for the eval run. We can now use these samples to train a CFM model. We provide a config `lj55_idem_cfm`
runtime directory for the eval run. The eval run will also log keys `test/full_batch/*` and `test/*` to wandb.
For GMM, DW4 and LJ13 you can refer to the `test/2-Wasserstein` and `test/dist_total_var` keys to reproduce our paper
numbers while for LJ55 refer to the `test/full_batch/2-Wasserstein` and `test/full_batch/dist_total_var` keys.
We can now use these samples to train a CFM model. We provide a config `lj55_idem_cfm`
which has the settings to enable the CFM pipeline to run by default for the LJ55 task, though doing so for other tasks
is also simple. The main config changes required are to set `model.debug_use_train_data=true, model.nll_with_cfm=true`
and `model.logz_with_cfm=true`. To point the CFM training run to the dataset generated from iDEM samples we can set the
Expand Down
19 changes: 17 additions & 2 deletions dem/energies/multi_double_well_energy.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
from io import BytesIO
from typing import Optional

import matplotlib.pyplot as plt
Expand Down Expand Up @@ -239,5 +240,19 @@ def get_dataset_fig(self, samples):
axs[1].set_xlabel("Energy")
axs[1].legend()

fig.canvas.draw()
return PIL.Image.frombytes("RGB", fig.canvas.get_width_height(), fig.canvas.tostring_rgb())
try:
buffer = BytesIO()
fig.savefig(buffer, format="png", bbox_inches="tight", pad_inches=0)
buffer.seek(0)

return PIL.Image.open(buffer)

except Exception as e:
fig.canvas.draw()
return PIL.Image.frombytes(
"RGB", fig.canvas.get_width_height(), fig.canvas.renderer.buffer_rgba()
)
fig.canvas.draw()
return PIL.Image.frombytes(
"RGB", fig.canvas.get_width_height(), fig.canvas.tostring_rgb()
)
11 changes: 6 additions & 5 deletions dem/models/dem_module.py
Original file line number Diff line number Diff line change
Expand Up @@ -985,10 +985,10 @@ def on_test_epoch_end(self) -> None:
wandb_logger = get_wandb_logger(self.loggers)

self.eval_epoch_end("test")
# self._log_energy_w2(prefix="test")
# if self.energy_function.is_molecule:
# self._log_dist_w2(prefix="test")
# self._log_dist_total_var(prefix="test")
self._log_energy_w2(prefix="test")
if self.energy_function.is_molecule:
self._log_dist_w2(prefix="test")
self._log_dist_total_var(prefix="test")

if self.nll_with_cfm:
self._cfm_test_epoch_end()
Expand Down Expand Up @@ -1020,8 +1020,9 @@ def on_test_epoch_end(self) -> None:
final_samples = torch.cat(final_samples, dim=0)

print("Computing large batch distribution distances")
idx = torch.randperm(len(final_samples))[:10000]
names, dists = compute_full_dataset_distribution_distances(
self.energy_function.unnormalize(final_samples)[:, None],
self.energy_function.unnormalize(final_samples)[idx, None],
test_set[:, None],
self.energy_function,
)
Expand Down

0 comments on commit 6072dda

Please sign in to comment.