forked from codeplaysoftware/cutlass-fork
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Collective Builder API for PVC (codeplaysoftware#122)
* initial changes for pvc builder API support * fix a few compilation issues * fix remaining compilation errors * change from Unpredicated to 3 stage pipeline, bug fix when defining Stride B in gemm collective builder * change KernelSingleStage to KernelPVC * Remove question about the C and D type to be the same Co-authored-by: Mehdi Goli <[email protected]> * remove the #ifndef check * removed comments about alignment, check for nvidia target, and remove header included in packed_stride.hpp * change name from pvc_mma_builder to pvc_mma_builder * Remove comment about large margin error as it does not hold true anymore Co-authored-by: Muhammad Tanvir <[email protected]> * Shorten comment Co-authored-by: Mehdi Goli <[email protected]> * Remove comment about cluster in PVC Co-authored-by: Mehdi Goli <[email protected]> * Update include/cutlass/gemm/collective/builders/pvc_mma_builder.inl Co-authored-by: Mehdi Goli <[email protected]> * Update include/cutlass/gemm/collective/builders/pvc_mma_builder.inl Co-authored-by: Mehdi Goli <[email protected]> * change PVC to Intel Co-authored-by: Mehdi Goli <[email protected]> * remove other mentions of PVC and change them to Intel * Update include/cutlass/gemm/collective/builders/pvc_mma_builder.inl Co-authored-by: Mehdi Goli <[email protected]> * Update include/cutlass/gemm/collective/builders/pvc_mma_builder.inl Co-authored-by: Mehdi Goli <[email protected]> * Update include/cutlass/epilogue/collective/builders/pvc_builder.inl Co-authored-by: Mehdi Goli <[email protected]> * remove extra include from sm90_builder.inl * remove extra underscore --------- Co-authored-by: Mehdi Goli <[email protected]> Co-authored-by: Muhammad Tanvir <[email protected]>
- Loading branch information
1 parent
c9c7e78
commit 64acac8
Showing
8 changed files
with
657 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,390 @@ | ||
/*************************************************************************************************** | ||
* Copyright (c) 2024 - 2024 Codeplay Software Ltd. All rights reserved. | ||
* SPDX-License-Identifier: BSD-3-Clause | ||
* | ||
* Redistribution and use in source and binary forms, with or without | ||
* modification, are permitted provided that the following conditions are met: | ||
* | ||
* 1. Redistributions of source code must retain the above copyright notice, this | ||
* list of conditions and the following disclaimer. | ||
* | ||
* 2. Redistributions in binary form must reproduce the above copyright notice, | ||
* this list of conditions and the following disclaimer in the documentation | ||
* and/or other materials provided with the distribution. | ||
* | ||
* 3. Neither the name of the copyright holder nor the names of its | ||
* contributors may be used to endorse or promote products derived from | ||
* this software without specific prior written permission. | ||
* | ||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | ||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | ||
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE | ||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | ||
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | ||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | ||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
* | ||
**************************************************************************************************/ | ||
|
||
|
||
#include "cutlass/gemm/device/gemm_universal.h" | ||
#include "cutlass/gemm/device/gemm_universal_adapter.h" | ||
|
||
#include "cutlass/gemm/collective/collective_builder.hpp" | ||
#include "cutlass/epilogue/collective/collective_builder.hpp" | ||
#include "cutlass/kernel_hardware_info.h" | ||
|
||
#include "cutlass/util/command_line.h" | ||
#include "cutlass/util/device_memory.h" | ||
#include "cutlass/util/packed_stride.hpp" | ||
#include "cutlass/util/reference/device/gemm_complex.h" | ||
#include "cutlass/util/reference/device/tensor_compare.h" | ||
#include "cutlass/util/GPU_Clock.hpp" | ||
|
||
#include "cutlass/util/reference/device/tensor_relu.h" | ||
#include "cutlass/tensor_view.h" | ||
#include "cutlass/coord.h" | ||
|
||
#include <cute/tensor.hpp> | ||
#include <random> | ||
|
||
|
||
|
||
template <typename T> | ||
static void fill_matrix(std::vector<T> &vector) | ||
{ | ||
std::generate(std::begin(vector), std::end(vector), [&] { | ||
return static_cast<T>( (rand() / double(RAND_MAX)) ); | ||
}); | ||
} | ||
|
||
using namespace cute; | ||
|
||
/////////////////////////////////////////////////////////////////////////////////////////////////// | ||
|
||
// Command line options parsing | ||
struct Options { | ||
|
||
bool help; | ||
bool error; | ||
|
||
int m, n, k, l, iterations; | ||
float alpha, beta; | ||
|
||
Options(): | ||
help(false), | ||
error(false), | ||
m(4096), n(4096), k(4096), l(1), iterations(100), | ||
alpha(1.f), beta(0.f) | ||
{ } | ||
|
||
// Parses the command line | ||
void parse(int argc, char const **args) { | ||
cutlass::CommandLine cmd(argc, args); | ||
|
||
if (cmd.check_cmd_line_flag("help")) { | ||
help = true; | ||
return; | ||
} | ||
|
||
cmd.get_cmd_line_argument("m", m, 4096); | ||
cmd.get_cmd_line_argument("n", n, 4096); | ||
cmd.get_cmd_line_argument("k", k, 4096); | ||
cmd.get_cmd_line_argument("l", l, 1); | ||
cmd.get_cmd_line_argument("alpha", alpha, 1.f); | ||
cmd.get_cmd_line_argument("beta", beta, 0.f); | ||
cmd.get_cmd_line_argument("iterations", iterations, 100); | ||
} | ||
|
||
/// Prints the usage statement. | ||
std::ostream & print_usage(std::ostream &out) const { | ||
|
||
out << "PVC GEMM Example\n\n" | ||
<< "Options:\n\n" | ||
<< " --help If specified, displays this usage statement\n\n" | ||
<< " --m=<int> Sets the M extent of the GEMM\n" | ||
<< " --n=<int> Sets the N extent of the GEMM\n" | ||
<< " --k=<int> Sets the K extent of the GEMM\n" | ||
<< " --l=<int> Sets the L extent (batch count) of the GEMM\n" | ||
<< " --alpha=<s32> Epilogue scalar alpha\n" | ||
<< " --beta=<s32> Epilogue scalar beta\n\n" | ||
<< " --iterations=<int> Iterations\n\n"; | ||
|
||
return out; | ||
} | ||
}; | ||
|
||
/////////////////////////////////////////////////////////////////////////////////////////////////// | ||
|
||
template < | ||
class Gemm | ||
> | ||
struct ExampleRunner { | ||
|
||
using StrideA = typename Gemm::GemmKernel::StrideA; | ||
using StrideB = typename Gemm::GemmKernel::StrideB; | ||
using StrideC = typename Gemm::GemmKernel::StrideC; | ||
using StrideD = typename Gemm::GemmKernel::StrideD; | ||
|
||
using LayoutA = typename Gemm::LayoutA; | ||
using LayoutB = typename Gemm::LayoutB; | ||
using LayoutC = typename Gemm::LayoutC; | ||
using LayoutD = typename Gemm::LayoutD; | ||
|
||
using ElementA = typename Gemm::ElementA; | ||
using ElementB = typename Gemm::ElementB; | ||
using ElementAcc = typename Gemm::ElementAccumulator; | ||
|
||
using CollectiveEpilogue = typename Gemm::CollectiveEpilogue; | ||
using ElementC = typename Gemm::ElementC; | ||
using ElementOutput = typename CollectiveEpilogue::ElementOutput; | ||
using ElementCompute = typename CollectiveEpilogue::ElementCompute; | ||
using ElementAccumulator = typename CollectiveEpilogue::ElementAccumulator; | ||
|
||
using ProblemShapeType = typename Gemm::GemmKernel::ProblemShape; | ||
|
||
// | ||
// Data members | ||
// | ||
|
||
/// Initialization | ||
StrideA stride_A; | ||
StrideB stride_B; | ||
StrideC stride_C; | ||
StrideD stride_D; | ||
|
||
cutlass::DeviceAllocation<ElementA> block_A; | ||
cutlass::DeviceAllocation<ElementB> block_B; | ||
cutlass::DeviceAllocation<ElementC> block_C; | ||
cutlass::DeviceAllocation<ElementOutput> block_D; | ||
cutlass::DeviceAllocation<ElementOutput> block_ref_D; | ||
|
||
// | ||
// Methods | ||
// | ||
|
||
bool verify(const ProblemShapeType& problem_size, ElementCompute alpha, ElementCompute beta) { | ||
auto [M, N, K, L] = problem_size; | ||
|
||
cutlass::TensorRef ref_A(block_A.get(), LayoutA::packed({M, K})); | ||
cutlass::TensorRef ref_B(block_B.get(), LayoutB::packed({K, N})); | ||
cutlass::TensorRef ref_C(block_C.get(), LayoutC::packed({M, N})); | ||
cutlass::TensorRef ref_D(block_ref_D.get(), LayoutD::packed({M, N})); | ||
|
||
cutlass::reference::device::GemmComplex( | ||
{M, N, K}, | ||
alpha, | ||
ref_A, | ||
cutlass::ComplexTransform::kNone, | ||
ref_B, | ||
cutlass::ComplexTransform::kNone, | ||
beta, | ||
ref_C, | ||
ref_D, | ||
ElementAccumulator(0), | ||
L, // batch_count | ||
M * K, // batch_stride_A | ||
K * N, // batch_stride_B | ||
M * N, // batch_stride_C | ||
M * N // batch_stride_D | ||
); | ||
|
||
syclcompat::wait(); | ||
|
||
using TensorView = cutlass::TensorView<ElementOutput, LayoutD>; | ||
cutlass::reference::device::TensorReLu(TensorView(block_ref_D.get(), LayoutD::packed({M, N}), | ||
cutlass::make_Coord(M, N))); | ||
|
||
syclcompat::wait(); | ||
|
||
// Check if output from CUTLASS kernel and reference kernel are relatively equal or not | ||
auto epsilon = static_cast<ElementOutput>(0.1f); | ||
auto nonzero_floor = static_cast<ElementOutput>(0.1f); | ||
|
||
bool passed = cutlass::reference::device::BlockCompareRelativelyEqual( | ||
block_ref_D.get(), block_D.get(), block_D.size(), | ||
epsilon, nonzero_floor); | ||
|
||
return passed; | ||
} | ||
|
||
/// Initialize operands to be used in the GEMM and reference GEMM | ||
void initialize(const ProblemShapeType& problem_size) { | ||
auto problem_shape_MNKL = cute::append<4>(problem_size, 1); | ||
auto [M, N, K, L] = problem_shape_MNKL; | ||
|
||
stride_A = cutlass::make_cute_packed_stride(StrideA{}, cute::make_shape(M, K, L)); | ||
stride_B = cutlass::make_cute_packed_stride(StrideB{}, cute::make_shape(N, K, L)); | ||
stride_C = cutlass::make_cute_packed_stride(StrideC{}, cute::make_shape(M, N, L)); | ||
stride_D = cutlass::make_cute_packed_stride(StrideD{}, cute::make_shape(M, N, L)); | ||
|
||
block_A.reset(M * K * L); | ||
block_B.reset(K * N * L); | ||
block_C.reset(M * N * L); | ||
block_D.reset(M * N * L); | ||
block_ref_D.reset(M * N * L); | ||
|
||
// TODO: Enable initialization on device directly once RNG is | ||
// available through SYCL. | ||
std::vector<ElementA> a(K * M * L); | ||
std::vector<ElementB> b(K * N * L); | ||
std::vector<ElementC> c(M * N * L); | ||
std::vector<ElementC> d(M * N * L, ElementC{0}); | ||
|
||
fill_matrix(a); | ||
fill_matrix(b); | ||
fill_matrix(c); | ||
|
||
syclcompat::memcpy(block_A.get(), a.data(), a.size() * sizeof(ElementA)); | ||
syclcompat::memcpy(block_B.get(), b.data(), b.size() * sizeof(ElementB)); | ||
syclcompat::memcpy(block_C.get(), c.data(), c.size() * sizeof(ElementC)); | ||
syclcompat::memcpy(block_D.get(), d.data(), d.size() * sizeof(ElementC)); | ||
} | ||
|
||
void run(const Options& options, const cutlass::KernelHardwareInfo& hw_info) { | ||
ProblemShapeType problem_size = ProblemShapeType{options.m, options.n, options.k, options.l}; | ||
|
||
initialize(problem_size); | ||
|
||
typename Gemm::GemmKernel::Arguments arguments{ | ||
cutlass::gemm::GemmUniversalMode::kGemm, | ||
problem_size, | ||
{block_A.get(), stride_A, block_B.get(), stride_B}, | ||
{{options.alpha, options.beta}, block_C.get(), stride_C, block_D.get(), stride_D}, | ||
hw_info | ||
}; | ||
|
||
Gemm gemm_op; | ||
|
||
size_t workspace_size = Gemm::get_workspace_size(arguments); | ||
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size); | ||
|
||
gemm_op.can_implement(arguments); | ||
|
||
gemm_op.initialize(arguments, workspace.get()); | ||
|
||
// Run the GEMM | ||
gemm_op.run(); | ||
|
||
syclcompat::wait(); | ||
|
||
// Verify that the result is correct | ||
bool passed = verify(problem_size, options.alpha, options.beta); | ||
std::cout << "Disposition: " << (passed ? "Passed" : "Failed") << std::endl; | ||
|
||
if (passed && options.iterations > 0) { | ||
GPU_Clock timer; | ||
timer.start(); | ||
for (int i = 0; i < options.iterations; ++i) { | ||
gemm_op.run(); | ||
} | ||
syclcompat::wait(); | ||
|
||
float cute_time = timer.seconds() / options.iterations; | ||
double tflops = (2.0 * options.m * options.n * options.k * options.l) * 1e-12; | ||
std::cout << "Problem Size: " << options.m << 'x' << options.n << 'x' << options.k << 'x' << options.l << std::endl; | ||
printf("Cutlass GEMM Performance: [%4.3f]TFlop/s (%6.4f)ms\n", tflops / cute_time, cute_time*1000); | ||
} | ||
|
||
return; | ||
} | ||
|
||
}; | ||
|
||
int main(int argc, const char** argv) | ||
{ | ||
// | ||
// Parse options | ||
// | ||
|
||
Options options; | ||
|
||
options.parse(argc, argv); | ||
|
||
if (options.help) { | ||
options.print_usage(std::cout) << std::endl; | ||
return 0; | ||
} | ||
|
||
if (options.error) { | ||
std::cerr << "Aborting execution." << std::endl; | ||
return -1; | ||
} | ||
|
||
// | ||
// Run examples | ||
// | ||
|
||
// The KernelHardwareInfo struct holds the number of EUs on the GPU with a given device ID. This | ||
// information is used by the underlying kernel. | ||
cutlass::KernelHardwareInfo hw_info; | ||
|
||
// Change device_id to another value if you are running on a machine with multiple GPUs and wish | ||
// to use a GPU other than that with device ID 0. | ||
hw_info.sm_count = cutlass::KernelHardwareInfo::query_device_multiprocessor_count(hw_info.device_id); | ||
|
||
bool passed; | ||
|
||
// The code section below describes datatype for input, output matrices and computation between | ||
// elements in input matrices. | ||
using ElementAccumulator = float; // <- data type of accumulator | ||
using ElementComputeEpilogue = float; // <- data type of epilogue operations | ||
using ElementInputA = bfloat16_t; // <- data type of elements in input matrix A | ||
using ElementInputB = bfloat16_t; // <- data type of elements in input matrix B | ||
using ElementOutput = float; // <- data type of elements in output matrix D | ||
|
||
constexpr int AlignmentA = sizeof(ElementInputA); | ||
constexpr int AlignmentB = sizeof(ElementInputB); | ||
constexpr int AlignmentC = sizeof(ElementAccumulator); | ||
constexpr int AlignmentD = sizeof(ElementOutput); | ||
|
||
using LayoutA = cutlass::layout::RowMajor; | ||
using LayoutB = cutlass::layout::RowMajor; | ||
using LayoutC = cutlass::layout::RowMajor; | ||
using LayoutD = cutlass::layout::RowMajor; | ||
|
||
// Workgroup-level tile | ||
using TileShape = Shape<_256, _256, _32>; | ||
|
||
using CollectiveMainloop = cutlass::gemm::collective::CollectiveBuilder< | ||
cutlass::arch::IntelPVC, cutlass::arch::OpClassTensorOp, | ||
ElementInputA, LayoutA, AlignmentA, | ||
ElementInputB, LayoutB, AlignmentB, | ||
ElementAccumulator, | ||
TileShape, Shape<_1, _1, _1>, | ||
cutlass::gemm::collective::StageCountAuto, | ||
cutlass::gemm::collective::KernelScheduleAuto | ||
>::CollectiveOp; | ||
|
||
using EpilogueOp = cutlass::epilogue::fusion::LinCombEltAct<cutlass::epilogue::thread::ReLu, | ||
ElementOutput, ElementComputeEpilogue, ElementAccumulator, | ||
ElementAccumulator, cutlass::FloatRoundStyle::round_to_nearest>; | ||
|
||
using CollectiveEpilogue = cutlass::epilogue::collective::CollectiveBuilder< | ||
cutlass::arch::IntelPVC, cutlass::arch::OpClassTensorOp, | ||
TileShape, Shape<_1, _1, _1>, | ||
cutlass::epilogue::collective::EpilogueTileAuto, ElementComputeEpilogue, | ||
ElementAccumulator, | ||
ElementAccumulator, LayoutC, AlignmentC, | ||
ElementOutput, LayoutD, AlignmentD, | ||
cutlass::epilogue::collective::EpilogueScheduleAuto, | ||
EpilogueOp | ||
>::CollectiveOp; | ||
|
||
using GemmKernel = cutlass::gemm::kernel::GemmUniversal< | ||
Shape<int, int, int, int>, | ||
CollectiveMainloop, | ||
CollectiveEpilogue | ||
>; | ||
|
||
using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>; | ||
|
||
ExampleRunner<Gemm> runner; | ||
|
||
runner.run(options, hw_info); | ||
|
||
return 0; | ||
} |
Oops, something went wrong.