Skip to content

Commit

Permalink
Merge branch 'main' of https://github.com/Azure/kdm into Ishaan/impro…
Browse files Browse the repository at this point in the history
…ve-readme
  • Loading branch information
ishaansehgal99 committed Nov 5, 2023
2 parents 8f12046 + 478e45e commit a5bf01b
Show file tree
Hide file tree
Showing 6 changed files with 710 additions and 16 deletions.
57 changes: 41 additions & 16 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,25 +1,48 @@
# Kubernetes AI Toolchain Operator(KAITO)
# Kubernetes AI Toolchain Operator (Kaito)

[![Go Report Card](https://goreportcard.com/badge/github.com/Azure/kaito)](https://goreportcard.com/report/github.com/Azure/kaito)
![GitHub go.mod Go version](https://img.shields.io/github/go-mod/go-version/Azure/kaito)

KAITO has been designed to simplify the workflow of launching AI inference services against popular large open sourced AI models,
such as Falcon or Llama, in a Kubernetes cluster.
Kaito is an operator that automates the AI/ML inference model deployment in a Kubernetes cluster.
The target models are popular large open sourced inference models such as [falcon](https://huggingface.co/tiiuae) and [llama 2](https://github.com/facebookresearch/llama).
Kaito has the following key differentiations compared to most of the mainstream model deployment methodologies built on top of virtual machine infrastructures.
- Manage large model files using container images. A http server is provided to perform inference calls using the model library.
- Avoid tuning deployment parameters to fit GPU hardware by providing preset configurations.
- Auto-provision GPU nodes based on model requirements.
- Host large model images in public Microsoft Container Registry(MCR) if the license allows.

Using Kaito, the workflow of onboarding large AI inference models in Kubernetes is largely simplified.


## Architecture

Kaito follows the classic Kubernetes Custom Resource Definition(CRD)/controller design pattern. User manages a `workspace` custom resource which describes the GPU requirements and the inference specification. Kaito controllers will automate the deployment by reconciling the `workspace` custom resource.
<div align="left">
<img src="docs/img/arch.png" width=80% title="Kaito architecture">
</div>

The above figure presents the Kaito architecture overview. Its major components consist of:
- **Workspace controller**: It reconciles the `workspace` custom resource, creates `machine` (explained below) custom resources to trigger node auto provisioning, and creates the inference workload (`deployment` or `statefulset`) based on the model preset configurations.
- **Node provisioner controller**: The controller's name is *gpu-provisioner* in [Kaito helm chart](charts/kaito/gpu-provisioner). It uses the `machine` CRD originated from [Karpenter](https://github.com/aws/karpenter-core) to interact with the workspace controller. It integrates with Azure Kubernetes Service(AKS) APIs to add new GPU nodes to the AKS cluster.
Note that the *gpu-provisioner* is not an open sourced component. It can be replaced by other controllers if they support Karpenter-core APIs.


---

## Installation
The following guidence assumes **Azure Kubernetes Service(AKS)** is used to host the Kubernetes cluster .
The following guidance assumes **Azure Kubernetes Service(AKS)** is used to host the Kubernetes cluster .

### Enable Workload Identity and OIDC Issuer features
The `gpu-povisioner` component requires the [workload identity](https://learn.microsoft.com/en-us/azure/aks/workload-identity-overview?tabs=dotnet) feature to acquire the token to access the AKS managed cluster with proper permissions.
#### Enable Workload Identity and OIDC Issuer features
The *gpu-povisioner* controller requires the [workload identity](https://learn.microsoft.com/en-us/azure/aks/workload-identity-overview?tabs=dotnet) feature to acquire the access token to the AKS cluster.

```bash
export RESOURCE_GROUP="myResourceGroup"
export MY_CLUSTER="myCluster"
az aks update -g $RESOURCE_GROUP -n $MY_CLUSTER --enable-oidc-issuer --enable-workload-identity --enable-managed-identity
```

### Create an identity and assign permissions
The identity `kaitoprovisioner` is created for the `gpu-povisioner` controller. It is assigned Contributor role for the managed cluster resource to allow changing `$MY_CLUSTER` (e.g., provisioning new nodes in it).
#### Create an identity and assign permissions
The identity `kaitoprovisioner` is created for the *gpu-povisioner* controller. It is assigned Contributor role for the managed cluster resource to allow changing `$MY_CLUSTER` (e.g., provisioning new nodes in it).
```bash
export SUBSCRIPTION="mySubscription"
az identity create --name kaitoprovisioner -g $RESOURCE_GROUP
Expand All @@ -29,7 +52,7 @@ az role assignment create --assignee $IDENTITY_PRINCIPAL_ID --scope /subscriptio

```

### Install helm charts
#### Install helm charts
Two charts will be installed in `$MY_CLUSTER`: `gpu-provisioner` chart and `workspace` chart.
```bash
helm install workspace ./charts/kaito/workspace
Expand All @@ -49,25 +72,27 @@ helm install gpu-provisioner ./charts/kaito/gpu-provisioner

```

### Create federated credential
This allows `gpu-provisioner` controller to use `kaitoprovisioner` identity via an access token.
#### Create the federated credential
The federated identity credential between the managed identity `kaitoprovisioner` and the service account used by the *gpu-provisioner* controller is created.
```bash
export AKS_OIDC_ISSUER=$(az aks show -n $MY_CLUSTER -g $RESOURCE_GROUP --subscription $SUBSCRIPTION --query "oidcIssuerProfile.issuerUrl" | tr -d '"')
az identity federated-credential create --name kaito-federatedcredential --identity-name kaitoprovisioner -g $RESOURCE_GROUP --issuer $AKS_OIDC_ISSUER --subject system:serviceaccount:"gpu-provisioner:gpu-provisioner" --audience api://AzureADTokenExchange --subscription $SUBSCRIPTION
```
Note that before doing this step, the `gpu-provisioner` controller pod will constantly fail with the following message in the log:
Then the *gpu-provisioner* can access the managed cluster using a trust token with the same permissions of the `kaitoprovisioner` identity.
Note that before finishing this step, the *gpu-provisioner* controller pod will constantly fail with the following message in the log:
```
panic: Configure azure client fails. Please ensure federatedcredential has been created for identity XXXX.
```
The pod will reach running state once the federated credential is created.

### Clean up
#### Clean up

```bash
helm uninstall gpu-provisioner
helm uninstall workspace
```

---
## Quick start

After installing Kaito, one can try following commands to start a faclon-7b inference service.
Expand All @@ -88,14 +113,14 @@ inference:
$ kubectl apply -f examples/kaito_workspace_falcon_7b.yaml
```
The workspace status can be tracked by running the following command.
The workspace status can be tracked by running the following command. When the WORKSPACEREADY column becomes `True`, the model has been deployed successfully.
```
$ kubectl get workspace workspace-falcon-7b
NAME INSTANCE RESOURCEREADY INFERENCEREADY WORKSPACEREADY AGE
workspace-falcon-7b Standard_NC12s_v3 True True True 10m
```
Once the workspace is ready, one can find the inference service's cluster ip and use a temporal `curl` pod to test the service endpoint in cluster.
Next, one can find the inference service's cluster ip and use a temporal `curl` pod to test the service endpoint in the cluster.
```
$ kubectl get svc workspace-falcon-7b
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
Expand All @@ -105,7 +130,7 @@ $ kubectl run -it --rm --restart=Never curl --image=curlimages/curl sh
~ $ curl -X POST http://<CLUSTERIP>/chat -H "accept: application/json" -H "Content-Type: application/json" -d "{\"prompt\":\"YOUR QUESTION HERE\"}"
```

---
## Contributing

[Read more](docs/contributing/readme.md)
Expand Down
104 changes: 104 additions & 0 deletions api/v1alpha1/sku_config.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT license.

package v1alpha1

import "strings"

type GPUConfig struct {
SKU string
SupportedOS []string
GPUDriver string
GPUCount int
GPUMem int
}

type PresetRequirements struct {
MinGPUCount int
MinMemoryPerGPU int // in GB
MinTotalMemory int // in GB
}

var PresetRequirementsMap = map[string]PresetRequirements{
"falcon-7b": {MinGPUCount: 1, MinMemoryPerGPU: 0, MinTotalMemory: 15},
"falcon-7b-instruct": {MinGPUCount: 1, MinMemoryPerGPU: 0, MinTotalMemory: 15},
"falcon-40b": {MinGPUCount: 2, MinMemoryPerGPU: 0, MinTotalMemory: 90},
"falcon-40b-instruct": {MinGPUCount: 2, MinMemoryPerGPU: 0, MinTotalMemory: 90},

"llama-2-7b": {MinGPUCount: 1, MinMemoryPerGPU: 14, MinTotalMemory: 14},
"llama-2-13b": {MinGPUCount: 2, MinMemoryPerGPU: 15, MinTotalMemory: 30},
"llama-2-70b": {MinGPUCount: 8, MinMemoryPerGPU: 19, MinTotalMemory: 152},

"llama-2-7b-chat": {MinGPUCount: 1, MinMemoryPerGPU: 14, MinTotalMemory: 14},
"llama-2-13b-chat": {MinGPUCount: 2, MinMemoryPerGPU: 15, MinTotalMemory: 30},
"llama-2-70b-chat": {MinGPUCount: 8, MinMemoryPerGPU: 19, MinTotalMemory: 152},
}

// Helper function to check if a preset is valid
func isValidPreset(preset string) bool {
_, exists := PresetRequirementsMap[preset]
return exists
}

func getSupportedSKUs() string {
skus := make([]string, 0, len(SupportedGPUConfigs))
for sku := range SupportedGPUConfigs {
skus = append(skus, sku)
}
return strings.Join(skus, ", ")
}

var SupportedGPUConfigs = map[string]GPUConfig{
"standard_nc6": {SKU: "standard_nc6", GPUCount: 1, GPUMem: 12, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia470CudaDriver"},
"standard_nc12": {SKU: "standard_nc12", GPUCount: 2, GPUMem: 24, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia470CudaDriver"},
"standard_nc24": {SKU: "standard_nc24", GPUCount: 4, GPUMem: 48, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia470CudaDriver"},
"standard_nc24r": {SKU: "standard_nc24r", GPUCount: 4, GPUMem: 48, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia470CudaDriver"},
"standard_nv6": {SKU: "standard_nv6", GPUCount: 1, GPUMem: 8, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia510GridDriver"},
"standard_nv12": {SKU: "standard_nv12", GPUCount: 2, GPUMem: 16, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia510GridDriver"},
"standard_nv24": {SKU: "standard_nv24", GPUCount: 4, GPUMem: 32, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia510GridDriver"},
"standard_nv12s_v3": {SKU: "standard_nv12s_v3", GPUCount: 1, GPUMem: 8, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia510GridDriver"},
"standard_nv24s_v3": {SKU: "standard_nv24s_v3", GPUCount: 2, GPUMem: 16, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia510GridDriver"},
"standard_nv48s_v3": {SKU: "standard_nv48s_v3", GPUCount: 4, GPUMem: 32, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia510GridDriver"},
// "standard_nv24r": {SKU: "standard_nv24r", GPUCount: x, GPUMem: x, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia510GridDriver"},
"standard_nd6s": {SKU: "standard_nd6s", GPUCount: 1, GPUMem: 24, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
"standard_nd12s": {SKU: "standard_nd12s", GPUCount: 2, GPUMem: 48, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
"standard_nd24s": {SKU: "standard_nd24s", GPUCount: 4, GPUMem: 96, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
"standard_nd24rs": {SKU: "standard_nd24rs", GPUCount: 4, GPUMem: 96, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
"standard_nc6s_v2": {SKU: "standard_nc6s_v2", GPUCount: 1, GPUMem: 16, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
"standard_nc12s_v2": {SKU: "standard_nc12s_v2", GPUCount: 2, GPUMem: 32, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
"standard_nc24s_v2": {SKU: "standard_nc24s_v2", GPUCount: 4, GPUMem: 64, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
"standard_nc24rs_v2": {SKU: "standard_nc24rs_v2", GPUCount: 4, GPUMem: 64, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
"standard_nc6s_v3": {SKU: "standard_nc6s_v3", GPUCount: 1, GPUMem: 16, SupportedOS: []string{"Mariner", "Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
"standard_nc12s_v3": {SKU: "standard_nc12s_v3", GPUCount: 2, GPUMem: 32, SupportedOS: []string{"Mariner", "Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
"standard_nc24s_v3": {SKU: "standard_nc24s_v3", GPUCount: 4, GPUMem: 64, SupportedOS: []string{"Mariner", "Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
"standard_nc24rs_v3": {SKU: "standard_nc24rs_v3", GPUCount: 4, GPUMem: 64, SupportedOS: []string{"Mariner", "Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
// "standard_nd40s_v3": {SKU: "standard_nd40s_v3", GPUCount: x, GPUMem: x, SupportedOS: []string{"Mariner", "Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
"standard_nd40rs_v2": {SKU: "standard_nd40rs_v2", GPUCount: 8, GPUMem: 256, SupportedOS: []string{"Mariner", "Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
"standard_nc4as_t4_v3": {SKU: "standard_nc4as_t4_v3", GPUCount: 1, GPUMem: 16, SupportedOS: []string{"Mariner", "Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
"standard_nc8as_t4_v3": {SKU: "standard_nc8as_t4_v3", GPUCount: 1, GPUMem: 16, SupportedOS: []string{"Mariner", "Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
"standard_nc16as_t4_v3": {SKU: "standard_nc16as_t4_v3", GPUCount: 1, GPUMem: 16, SupportedOS: []string{"Mariner", "Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
"standard_nc64as_t4_v3": {SKU: "standard_nc64as_t4_v3", GPUCount: 4, GPUMem: 64, SupportedOS: []string{"Mariner", "Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
"standard_nd96asr_v4": {SKU: "standard_nd96asr_v4", GPUCount: 8, GPUMem: 320, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
// "standard_nd112asr_a100_v4": {SKU: "standard_nd112asr_a100_v4", GPUCount: x, GPUMem: x, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
// "standard_nd120asr_a100_v4": {SKU: "standard_nd120asr_a100_v4", GPUCount: x, GPUMem: x, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
"standard_nd96amsr_a100_v4": {SKU: "standard_nd96amsr_a100_v4", GPUCount: 8, GPUMem: 640, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
// "standard_nd112amsr_a100_v4": {SKU: "standard_nd112amsr_a100_v4", GPUCount: x, GPUMem: x, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
// "standard_nd120amsr_a100_v4": {SKU: "standard_nd120amsr_a100_v4", GPUCount: x, GPUMem: x, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
"standard_nc24ads_a100_v4": {SKU: "standard_nc24ads_a100_v4", GPUCount: 1, GPUMem: 80, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
"standard_nc48ads_a100_v4": {SKU: "standard_nc48ads_a100_v4", GPUCount: 2, GPUMem: 160, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
"standard_nc96ads_a100_v4": {SKU: "standard_nc96ads_a100_v4", GPUCount: 4, GPUMem: 320, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
// "standard_ncads_a100_v4": {SKU: "standard_ncads_a100_v4", GPUCount: x, GPUMem: x, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
/*GPU Mem based on A10-24 Spec - TODO: Need to confirm GPU Mem*/
// "standard_nc8ads_a10_v4": {SKU: "standard_nc8ads_a10_v4", GPUCount: 1, GPUMem: 24, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia510GridDriver"},
// "standard_nc16ads_a10_v4": {SKU: "standard_nc16ads_a10_v4", GPUCount: 1, GPUMem: 24, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia510GridDriver"},
// "standard_nc32ads_a10_v4": {SKU: "standard_nc32ads_a10_v4", GPUCount: 2, GPUMem: 48, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia510GridDriver"},
/* SKUs with GPU Partition are treated as 1 GPU - https://learn.microsoft.com/en-us/azure/virtual-machines/nva10v5-series*/
"standard_nv6ads_a10_v5": {SKU: "standard_nv6ads_a10_v5", GPUCount: 1, GPUMem: 4, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia510GridDriver"},
"standard_nv12ads_a10_v5": {SKU: "standard_nv12ads_a10_v5", GPUCount: 1, GPUMem: 8, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia510GridDriver"},
"standard_nv18ads_a10_v5": {SKU: "standard_nv18ads_a10_v5", GPUCount: 1, GPUMem: 12, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia510GridDriver"},
"standard_nv36ads_a10_v5": {SKU: "standard_nv36ads_a10_v5", GPUCount: 1, GPUMem: 24, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia510GridDriver"},
"standard_nv36adms_a10_v5": {SKU: "standard_nv36adms_a10_v5", GPUCount: 1, GPUMem: 24, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia510GridDriver"},
"standard_nv72ads_a10_v5": {SKU: "standard_nv72ads_a10_v5", GPUCount: 2, GPUMem: 48, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia510GridDriver"},
// "standard_nd96ams_v4": {SKU: "standard_nd96ams_v4", GPUCount: x, GPUMem: x, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
// "standard_nd96ams_a100_v4": {SKU: "standard_nd96ams_a100_v4", GPUCount: x, GPUMem: x, SupportedOS: []string{"Ubuntu"}, GPUDriver: "Nvidia525CudaDriver"},
}
Loading

0 comments on commit a5bf01b

Please sign in to comment.