-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
2fd82a7
commit 4c231c3
Showing
1 changed file
with
47 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,47 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "91a2e6f3-186e-4be5-9c83-96fc74f6892e", | ||
"metadata": {}, | ||
"source": [ | ||
"# Plant disease\n", | ||
"Sources:\n", | ||
"- https://www.sciencedirect.com/science/article/abs/pii/S2352938521001361\n", | ||
"- https://www.mdpi.com/2072-4292/14/23/5947\n", | ||
"- https://link.springer.com/article/10.1007/s43154-020-00004-7/tables/1\n", | ||
"<table>\n", | ||
"<thead class=\"c-article-table-head\"><tr><th class=\"u-text-left \"><p>Disease</p></th><th class=\"u-text-left \"><p>Autonomous</p></th><th class=\"u-text-left \"><p>Material</p></th><th class=\"u-text-left \"><p>Platform description</p></th><th class=\"u-text-left \"><p>Spectral range</p></th><th class=\"u-text-left \"><p>Data processing</p></th><th class=\"u-text-left \"><p>References</p></th></tr></thead><tbody><tr><td rowspan=\"2\" class=\"u-text-left \"><p>Powdery mildew</p></td><td class=\"u-text-left \"><p>Yes (green house)</p></td><td class=\"u-text-left \"><p>Barley</p></td><td class=\"u-text-left \"><p>Spectral imaging with automated sensor positioning system inside the greenhouse</p></td><td class=\"u-text-left \"><p>VNIR (400–1000 nm)</p></td><td class=\"u-text-left \"><p>Simplex volume maximisation (SiVM) and support vector machine (SVM)</p></td><td class=\"u-text-left \"><p>[<a data-track=\"click\" data-track-action=\"reference anchor\" data-track-label=\"link\" data-test=\"citation-ref\" aria-label=\"Reference 21\" title=\"\" href=\"/article/10.1007/s43154-020-00004-7#ref-CR21\" id=\"ref-link-section-d118707657e567\">21</a>••]</p></td></tr><tr><td class=\"u-text-left \"><p>No (laboratory conditions)</p></td><td class=\"u-text-left \"><p>Barley</p></td><td class=\"u-text-left \"><p>Imaging setup with translation stage for sample presentation</p></td><td class=\"u-text-left \"><p>VNIR (400–1000 nm)</p></td><td class=\"u-text-left \"><p>Linear discriminant analysis (LDA) and feature selection with ReliefF</p></td><td class=\"u-text-left \"><p>[<a data-track=\"click\" data-track-action=\"reference anchor\" data-track-label=\"link\" data-test=\"citation-ref\" aria-label=\"Reference 25\" title=\"\" href=\"/article/10.1007/s43154-020-00004-7#ref-CR25\" id=\"ref-link-section-d118707657e584\">25</a>]</p></td></tr><tr><td class=\"u-text-left \"><p>Grey mould leaf infection (<i>Botrytis cinerea</i>, fungi)</p></td><td class=\"u-text-left \"><p>Semi (indoor)</p></td><td class=\"u-text-left \"><p>Tomato</p></td><td class=\"u-text-left \"><p>Plant growth chamber with additional lightening to ensure uniform illumination</p></td><td class=\"u-text-left \"><p>5 bands: red, green, blue, near-infrared and red-edge</p></td><td class=\"u-text-left \"><p>Self-organising classifier to classify healthy and infected tissue</p></td><td class=\"u-text-left \"><p>[<a data-track=\"click\" data-track-action=\"reference anchor\" data-track-label=\"link\" data-test=\"citation-ref\" aria-label=\"Reference 3\" title=\"\" href=\"/article/10.1007/s43154-020-00004-7#ref-CR3\" id=\"ref-link-section-d118707657e607\">3</a>]</p></td></tr><tr><td class=\"u-text-left \"><p>Potato Y virus (<i>Potyviridae</i>, virus)</p></td><td class=\"u-text-left \"><p>Semi (field condition)</p></td><td class=\"u-text-left \"><p>Potato</p></td><td class=\"u-text-left \"><p>A tractor-mountable measurement box carrying spectral imager, protection from external lighting and embedded PC</p></td><td class=\"u-text-left \"><p>VNIR (400–1000 nm)</p></td><td class=\"u-text-left \"><p>Deep learning (fully convolutional neural network)</p></td><td class=\"u-text-left \"><p>[<a data-track=\"click\" data-track-action=\"reference anchor\" data-track-label=\"link\" data-test=\"citation-ref\" aria-label=\"Reference 10\" title=\"\" href=\"/article/10.1007/s43154-020-00004-7#ref-CR10\" id=\"ref-link-section-d118707657e630\">10</a>•]</p></td></tr><tr><td class=\"u-text-left \"><p>Tulip break virus</p></td><td class=\"u-text-left \"><p>Semi (field condition)</p></td><td class=\"u-text-left \"><p>Tulip</p></td><td class=\"u-text-left \"><p>Field rail system with hand driven trolley platform</p></td><td class=\"u-text-left \"><p>RGB combined with NIR</p></td><td class=\"u-text-left \"><p>Deep learning (Faster R-convolutional neural network)</p></td><td class=\"u-text-left \"><p>[<a data-track=\"click\" data-track-action=\"reference anchor\" data-track-label=\"link\" data-test=\"citation-ref\" aria-label=\"Reference 9\" title=\"\" href=\"/article/10.1007/s43154-020-00004-7#ref-CR9\" id=\"ref-link-section-d118707657e649\">9</a>•]</p></td></tr><tr><td class=\"u-text-left \"><p><i>Sclerotinia sclerotiorum</i> (fungi)</p></td><td class=\"u-text-left \"><p>No (laboratory conditions)</p></td><td class=\"u-text-left \"><p>Oilseed rape</p></td><td class=\"u-text-left \"><p>Indoor setup with translation stage used for imaging the plants</p></td><td class=\"u-text-left \"><p>VNIR (384–1034 nm)</p></td><td class=\"u-text-left \"><p>Partial least square discriminant analysis, SVM, radial basis function neural network, emerging learning neural network to detect disease</p></td><td class=\"u-text-left \"><p>[<a data-track=\"click\" data-track-action=\"reference anchor\" data-track-label=\"link\" data-test=\"citation-ref\" aria-label=\"Reference 23\" title=\"\" href=\"/article/10.1007/s43154-020-00004-7#ref-CR23\" id=\"ref-link-section-d118707657e671\">23</a>]</p></td></tr><tr><td class=\"u-text-left \"><p>Apple scab (<i>Venturia inaequalis</i>, fungus)</p></td><td class=\"u-text-left \"><p>No (laboratory conditions)</p></td><td class=\"u-text-left \"><p>Apple</p></td><td class=\"u-text-left \"><p>Indoor spectral imaging setup with translation stage for samples presentation</p></td><td class=\"u-text-left \"><p>SWIR (1000–2500 nm)</p></td><td class=\"u-text-left \"><p>Partial least square discriminant analysis (PLS-DA)</p></td><td class=\"u-text-left \"><p>[<a data-track=\"click\" data-track-action=\"reference anchor\" data-track-label=\"link\" data-test=\"citation-ref\" aria-label=\"Reference 22\" title=\"\" href=\"/article/10.1007/s43154-020-00004-7#ref-CR22\" id=\"ref-link-section-d118707657e694\">22</a>]</p></td></tr><tr><td rowspan=\"2\" class=\"u-text-left \"><p>Anthracnose (<i>Colletotrichum</i>, fungi)</p></td><td class=\"u-text-left \"><p>Yes (field)</p></td><td class=\"u-text-left \"><p>Strawberry</p></td><td class=\"u-text-left \"><p>A mobile (4 wheels) platform with mounted spectral sensor (non-imaging)</p></td><td class=\"u-text-left \"><p>VNIR and SWIR (350–2500 nm)</p></td><td class=\"u-text-left \"><p>Vegetation indexes, step wise discriminant analysis (SDA), Fisher discriminant analysis (FDA), k-nearest neighbours (kNN)</p></td><td class=\"u-text-left \"><p>[<a data-track=\"click\" data-track-action=\"reference anchor\" data-track-label=\"link\" data-test=\"citation-ref\" aria-label=\"Reference 20\" title=\"\" href=\"/article/10.1007/s43154-020-00004-7#ref-CR20\" id=\"ref-link-section-d118707657e717\">20</a>••]</p></td></tr><tr><td class=\"u-text-left \"><p>No (laboratory conditions)</p></td><td class=\"u-text-left \"><p>Strawberry</p></td><td class=\"u-text-left \"><p>Imaging setup with translation stage for sample presentation</p></td><td class=\"u-text-left \"><p>VNIR (400–1000 nm)</p></td><td class=\"u-text-left \"><p>Spectral angle mapper (SAM), SDA, correlation measure (CM), partial least square regression (PLSR)</p></td><td class=\"u-text-left \"><p>[<a data-track=\"click\" data-track-action=\"reference anchor\" data-track-label=\"link\" data-test=\"citation-ref\" aria-label=\"Reference 26\" title=\"\" href=\"/article/10.1007/s43154-020-00004-7#ref-CR26\" id=\"ref-link-section-d118707657e734\">26</a>]</p></td></tr><tr><td class=\"u-text-left \"><p>Downy mildew (<i>Peronosporaceae</i>, fungi)</p></td><td class=\"u-text-left \"><p>Semi (green house)</p></td><td class=\"u-text-left \"><p>Grapevine</p></td><td class=\"u-text-left \"><p>Sensors and the light source arranged on a motorise line stage moving above the plants</p></td><td class=\"u-text-left \"><p>Two systems: non-imaging: (350–2500 nm) and spectral imaging: (400–2500 nm) and (940–2550 nm)</p></td><td class=\"u-text-left \"><p>SAM + 3 downy mildew indices</p></td><td class=\"u-text-left \"><p>[<a data-track=\"click\" data-track-action=\"reference anchor\" data-track-label=\"link\" data-test=\"citation-ref\" aria-label=\"Reference 27\" title=\"\" href=\"/article/10.1007/s43154-020-00004-7#ref-CR27\" id=\"ref-link-section-d118707657e757\">27</a>]</p></td></tr><tr><td class=\"u-text-left \"><p>Early blight (<i>Alternaria solani</i>, fungi)</p></td><td class=\"u-text-left \"><p>No (laboratory conditions)</p></td><td class=\"u-text-left \"><p>Tomato</p></td><td class=\"u-text-left \"><p>Imaging setup with translation stage for sample presentation</p></td><td class=\"u-text-left \"><p>VNIR (380–1023 nm)</p></td><td class=\"u-text-left \"><p>Extreme learning machine (ELM) classifier model, successive projections algorithm (SPA)</p></td><td class=\"u-text-left \"><p>[<a data-track=\"click\" data-track-action=\"reference anchor\" data-track-label=\"link\" data-test=\"citation-ref\" aria-label=\"Reference 24\" title=\"\" href=\"/article/10.1007/s43154-020-00004-7#ref-CR24\" id=\"ref-link-section-d118707657e780\">24</a>]</p></td></tr><tr><td class=\"u-text-left \"><p>Fire blight (<i>Erwinia amylovora</i>, bacteria)</p></td><td class=\"u-text-left \"><p>Semi (field condition)</p></td><td class=\"u-text-left \"><p>Apple</p></td><td class=\"u-text-left \"><p>Cameras mounted to an agricultural utility vehicle; an unmanned octocopter + multispectral camera</p></td><td class=\"u-text-left \"><p>RGB combined with infrared + non-imaging VNIR and SWIR (350–2500 nm)</p></td><td class=\"u-text-left \"><p>Vegetation indexes, PLSR and quadratic kernel support vector machine (QSVM)</p></td><td class=\"u-text-left \"><p>[<a data-track=\"click\" data-track-action=\"reference anchor\" data-track-label=\"link\" data-test=\"citation-ref\" aria-label=\"Reference 28\" title=\"\" href=\"/article/10.1007/s43154-020-00004-7#ref-CR28\" id=\"ref-link-section-d118707657e804\">28</a>]</p></td></tr><tr><td class=\"u-text-left \"><p>Late blight (<i>Phytophthora infestans</i>, fungi)</p></td><td class=\"u-text-left \"><p>No (laboratory conditions)</p></td><td class=\"u-text-left \"><p>Tomato</p></td><td class=\"u-text-left \"><p>Imaging setup with translation stage for sample presentation</p></td><td class=\"u-text-left \"><p>VNIR (380–1023 nm)</p></td><td class=\"u-text-left \"><p>Extreme learning machine (ELM) classifier model, successive projections algorithm (SPA)</p></td><td class=\"u-text-left \"><p>[<a data-track=\"click\" data-track-action=\"reference anchor\" data-track-label=\"link\" data-test=\"citation-ref\" aria-label=\"Reference 24\" title=\"\" href=\"/article/10.1007/s43154-020-00004-7#ref-CR24\" id=\"ref-link-section-d118707657e827\">24</a>]</p></td></tr><tr><td class=\"u-text-left \"><p>Mosaic virus (various genera, virus)</p></td><td class=\"u-text-left \"><p>No (laboratory condition)</p></td><td class=\"u-text-left \"><p>Cucumber</p></td><td class=\"u-text-left \"><p>Imaging setup with translation stage for sample presentation</p></td><td class=\"u-text-left \"><p>946 nm to 2016 nm</p></td><td class=\"u-text-left \"><p>PLS-DA, least square S-SVM</p></td><td class=\"u-text-left \"><p>[<a data-track=\"click\" data-track-action=\"reference anchor\" data-track-label=\"link\" data-test=\"citation-ref\" aria-label=\"Reference 29\" title=\"\" href=\"/article/10.1007/s43154-020-00004-7#ref-CR29\" id=\"ref-link-section-d118707657e846\">29</a>]</p></td></tr><tr><td class=\"u-text-left \"><p>Target and bacteria spots</p></td><td class=\"u-text-left \"><p>No (laboratory condition)</p></td><td class=\"u-text-left \"><p>Tomato</p></td><td class=\"u-text-left \"><p>Non-imaging spectrometer</p></td><td class=\"u-text-left \"><p>350–2500 nm</p></td><td class=\"u-text-left \"><p>Vegetation indexes</p></td><td class=\"u-text-left \"><p>[<a data-track=\"click\" data-track-action=\"reference anchor\" data-track-label=\"link\" data-test=\"citation-ref\" aria-label=\"Reference 30\" title=\"\" href=\"/article/10.1007/s43154-020-00004-7#ref-CR30\" id=\"ref-link-section-d118707657e865\">30</a>]</p></td></tr><tr><td class=\"u-text-left \"><p>Cercospora leaf spot (<i>Cercospora beticola</i>)</p></td><td class=\"u-text-left \"><p>No (laboratory condition)</p></td><td class=\"u-text-left \"><p>Sugar beet</p></td><td class=\"u-text-left \"><p>Imaging setup with translation stage for sample presentation</p></td><td class=\"u-text-left \"><p>460–850 nm</p></td><td class=\"u-text-left \"><p>Vegetation indexes and spherical k-means</p></td><td class=\"u-text-left \"><p>[<a data-track=\"click\" data-track-action=\"reference anchor\" data-track-label=\"link\" data-test=\"citation-ref\" aria-label=\"Reference 31\" title=\"\" href=\"/article/10.1007/s43154-020-00004-7#ref-CR31\" id=\"ref-link-section-d118707657e888\">31</a>]</p></td></tr></tbody>" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "4f42a100-a908-4538-b977-db81df1ce554", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.11.5" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |