Skip to content

Commit

Permalink
update readme
Browse files Browse the repository at this point in the history
  • Loading branch information
kohya-ss committed Apr 7, 2024
1 parent 683f3d6 commit c973b29
Showing 1 changed file with 6 additions and 5 deletions.
11 changes: 6 additions & 5 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -159,7 +159,7 @@ The majority of scripts is licensed under ASL 2.0 (including codes from Diffuser
- Fixed a bug that U-Net and Text Encoders are included in the state in `train_network.py` and `sdxl_train_network.py`. The saving and loading of the state are faster, the file size is smaller, and the memory usage when loading is reduced.
- DeepSpeed is supported. PR [#1101](https://github.com/kohya-ss/sd-scripts/pull/1101) and [#1139](https://github.com/kohya-ss/sd-scripts/pull/1139) Thanks to BootsofLagrangian! See PR [#1101](https://github.com/kohya-ss/sd-scripts/pull/1101) for details.
- The masked loss is supported in each training script. PR [#1207](https://github.com/kohya-ss/sd-scripts/pull/1207) See [Masked loss](#about-masked-loss) for details.
- Scheduled Huber Loss has been introduced to each training scripts. PR [#1228](https://github.com/kohya-ss/sd-scripts/pull/1228/) Thanks to kabachuha for the PR and cheald, drhead, and others for the discussion! See [Scheduled Huber Loss](#about-scheduled-huber-loss) for details.
- Scheduled Huber Loss has been introduced to each training scripts. PR [#1228](https://github.com/kohya-ss/sd-scripts/pull/1228/) Thanks to kabachuha for the PR and cheald, drhead, and others for the discussion! See the PR and [Scheduled Huber Loss](#about-scheduled-huber-loss) for details.
- The options `--noise_offset_random_strength` and `--ip_noise_gamma_random_strength` are added to each training script. These options can be used to vary the noise offset and ip noise gamma in the range of 0 to the specified value. PR [#1177](https://github.com/kohya-ss/sd-scripts/pull/1177) Thanks to KohakuBlueleaf!
- The options `--save_state_on_train_end` are added to each training script. PR [#1168](https://github.com/kohya-ss/sd-scripts/pull/1168) Thanks to gesen2egee!
- The options `--sample_every_n_epochs` and `--sample_every_n_steps` in each training script now display a warning and ignore them when a number less than or equal to `0` is specified. Thanks to S-Del for raising the issue.
Expand Down Expand Up @@ -219,6 +219,8 @@ See PR [#1228](https://github.com/kohya-ss/sd-scripts/pull/1228/) for details.
- `huber_schedule`: Specify the scheduling method. Choose `exponential`, `constant`, or `SNR`. The default is `exponential`.
- `huber_c`: Specify the Huber's parameter. The default is `0.1`.

Please read [Releases](https://github.com/kohya-ss/sd-scripts/releases) for recent updates.

#### 主要な変更点

- 依存ライブラリが更新されました。[アップグレード](./README-ja.md#アップグレード) を参照しライブラリを更新してください。
Expand All @@ -239,7 +241,7 @@ See PR [#1228](https://github.com/kohya-ss/sd-scripts/pull/1228/) for details.
- `train_network.py` および `sdxl_train_network.py` で、state に U-Net および Text Encoder が含まれる不具合を修正しました。state の保存、読み込みが高速化され、ファイルサイズも小さくなり、また読み込み時のメモリ使用量も削減されます。
- DeepSpeed がサポートされました。PR [#1101](https://github.com/kohya-ss/sd-scripts/pull/1101)[#1139](https://github.com/kohya-ss/sd-scripts/pull/1139) BootsofLagrangian 氏に感謝します。詳細は PR [#1101](https://github.com/kohya-ss/sd-scripts/pull/1101) をご覧ください。
- 各学習スクリプトでマスクロスをサポートしました。PR [#1207](https://github.com/kohya-ss/sd-scripts/pull/1207) 詳細は [マスクロスについて](#マスクロスについて) をご覧ください。
- 各学習スクリプトに Scheduled Huber Loss を追加しました。PR [#1228](https://github.com/kohya-ss/sd-scripts/pull/1228/) ご提案いただいた kabachuha 氏、および議論を深めてくださった cheald 氏、drhead 氏を始めとする諸氏に感謝します。詳細は [Scheduled Huber Loss について](#scheduled-huber-loss-について) をご覧ください。
- 各学習スクリプトに Scheduled Huber Loss を追加しました。PR [#1228](https://github.com/kohya-ss/sd-scripts/pull/1228/) ご提案いただいた kabachuha 氏、および議論を深めてくださった cheald 氏、drhead 氏を始めとする諸氏に感謝します。詳細は当該 PR および [Scheduled Huber Loss について](#scheduled-huber-loss-について) をご覧ください。
- 各学習スクリプトに、noise offset、ip noise gammaを、それぞれ 0~指定した値の範囲で変動させるオプション `--noise_offset_random_strength` および `--ip_noise_gamma_random_strength` が追加されました。 PR [#1177](https://github.com/kohya-ss/sd-scripts/pull/1177) KohakuBlueleaf 氏に感謝します。
- 各学習スクリプトに、学習終了時に state を保存する `--save_state_on_train_end` オプションが追加されました。 PR [#1168](https://github.com/kohya-ss/sd-scripts/pull/1168) gesen2egee 氏に感謝します。
- 各学習スクリプトで `--sample_every_n_epochs` および `--sample_every_n_steps` オプションに `0` 以下の数値を指定した時、警告を表示するとともにそれらを無視するよう変更しました。問題提起していただいた S-Del 氏に感謝します。
Expand Down Expand Up @@ -280,9 +282,6 @@ See PR [#1228](https://github.com/kohya-ss/sd-scripts/pull/1228/) for details.

マスクの指定には ControlNet データセットを使用します。マスク画像は RGB 画像である必要があります。R チャンネルのピクセル値 255 がロス計算対象、0 がロス計算対象外になります。0-255 の値は、0-1 の範囲に変換されます(つまりピクセル値 128 の部分はロスの重みが半分になります)。データセットの詳細は [LLLite ドキュメント](./docs/train_lllite_README-ja.md#データセットの準備) をご覧ください。

Please read [Releases](https://github.com/kohya-ss/sd-scripts/releases) for recent updates.
最近の更新情報は [Release](https://github.com/kohya-ss/sd-scripts/releases) をご覧ください。

#### Scheduled Huber Loss について

各学習スクリプトに、学習データ中の異常値や外れ値(data corruption)への耐性を高めるための手法、Scheduled Huber Lossが導入されました。
Expand All @@ -303,6 +302,8 @@ Please read [Releases](https://github.com/kohya-ss/sd-scripts/releases) for rece

PR 内でいくつかの比較が共有されています。この機能を試す場合、最初は `--loss_type smooth_l1 --huber_schedule snr --huber_c 0.1` などで試してみるとよいかもしれません。

最近の更新情報は [Release](https://github.com/kohya-ss/sd-scripts/releases) をご覧ください。

## Additional Information

### Naming of LoRA
Expand Down

0 comments on commit c973b29

Please sign in to comment.