Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

xception model addition #158

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
data
checkpoint
model/__pycache__
Binary file added __pycache__/utils.cpython-310.pyc
Binary file not shown.
15 changes: 8 additions & 7 deletions main.py
Original file line number Diff line number Diff line change
Expand Up @@ -68,8 +68,9 @@
# net = ShuffleNetV2(1)
# net = EfficientNetB0()
# net = RegNetX_200MF()
net = SimpleDLA()
net = net.to(device)
# net = SimpleDLA()
# net = net.to(device)
net = xception(pretrained = False, num_classes=10)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
Expand Down Expand Up @@ -147,8 +148,8 @@ def test(epoch):
torch.save(state, './checkpoint/ckpt.pth')
best_acc = acc


for epoch in range(start_epoch, start_epoch+200):
train(epoch)
test(epoch)
scheduler.step()
if __name__ == '__main__':
for epoch in range(start_epoch, start_epoch+200):
train(epoch)
test(epoch)
scheduler.step()
1 change: 1 addition & 0 deletions models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,3 +16,4 @@
from .regnet import *
from .dla_simple import *
from .dla import *
from .xception import *
Binary file added models/__pycache__/__init__.cpython-310.pyc
Binary file not shown.
Binary file added models/__pycache__/densenet.cpython-310.pyc
Binary file not shown.
Binary file added models/__pycache__/dla.cpython-310.pyc
Binary file not shown.
Binary file added models/__pycache__/dla_simple.cpython-310.pyc
Binary file not shown.
Binary file added models/__pycache__/dpn.cpython-310.pyc
Binary file not shown.
Binary file added models/__pycache__/efficientnet.cpython-310.pyc
Binary file not shown.
Binary file added models/__pycache__/googlenet.cpython-310.pyc
Binary file not shown.
Binary file added models/__pycache__/lenet.cpython-310.pyc
Binary file not shown.
Binary file added models/__pycache__/mobilenet.cpython-310.pyc
Binary file not shown.
Binary file added models/__pycache__/mobilenetv2.cpython-310.pyc
Binary file not shown.
Binary file added models/__pycache__/pnasnet.cpython-310.pyc
Binary file not shown.
Binary file added models/__pycache__/preact_resnet.cpython-310.pyc
Binary file not shown.
Binary file added models/__pycache__/regnet.cpython-310.pyc
Binary file not shown.
Binary file added models/__pycache__/resnet.cpython-310.pyc
Binary file not shown.
Binary file added models/__pycache__/resnext.cpython-310.pyc
Binary file not shown.
Binary file added models/__pycache__/senet.cpython-310.pyc
Binary file not shown.
Binary file added models/__pycache__/shufflenet.cpython-310.pyc
Binary file not shown.
Binary file added models/__pycache__/shufflenetv2.cpython-310.pyc
Binary file not shown.
Binary file added models/__pycache__/vgg.cpython-310.pyc
Binary file not shown.
Binary file added models/__pycache__/xception.cpython-310.pyc
Binary file not shown.
187 changes: 187 additions & 0 deletions models/xception.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,187 @@
import math
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.model_zoo as model_zoo
from torch.nn import init
import torch

__all__ = ['xception']

model_urls = {
'xception':'http://data.lip6.fr/cadene/pretrainedmodels/xception-43020ad28.pth'
}


class SeparableConv2d(nn.Module):
def __init__(self,in_channels,out_channels,kernel_size=1,stride=1,padding=0,dilation=1,bias=False):
super(SeparableConv2d,self).__init__()

self.conv1 = nn.Conv2d(in_channels,in_channels,kernel_size,stride,padding,dilation,groups=in_channels,bias=bias)
self.pointwise = nn.Conv2d(in_channels,out_channels,1,1,0,1,1,bias=bias)

def forward(self,x):
x = self.conv1(x)
x = self.pointwise(x)
return x


class Block(nn.Module):
def __init__(self,in_filters,out_filters,reps,strides=1,start_with_relu=True,grow_first=True):
super(Block, self).__init__()

if out_filters != in_filters or strides!=1:
self.skip = nn.Conv2d(in_filters,out_filters,1,stride=strides, bias=False)
self.skipbn = nn.BatchNorm2d(out_filters)
else:
self.skip=None

self.relu = nn.ReLU(inplace=True)
rep=[]

filters=in_filters
if grow_first:
rep.append(self.relu)
rep.append(SeparableConv2d(in_filters,out_filters,3,stride=1,padding=1,bias=False))
rep.append(nn.BatchNorm2d(out_filters))
filters = out_filters

for i in range(reps-1):
rep.append(self.relu)
rep.append(SeparableConv2d(filters,filters,3,stride=1,padding=1,bias=False))
rep.append(nn.BatchNorm2d(filters))

if not grow_first:
rep.append(self.relu)
rep.append(SeparableConv2d(in_filters,out_filters,3,stride=1,padding=1,bias=False))
rep.append(nn.BatchNorm2d(out_filters))

if not start_with_relu:
rep = rep[1:]
else:
rep[0] = nn.ReLU(inplace=False)

if strides != 1:
rep.append(nn.MaxPool2d(3,strides,1))
self.rep = nn.Sequential(*rep)

def forward(self,inp):
x = self.rep(inp)

if self.skip is not None:
skip = self.skip(inp)
skip = self.skipbn(skip)
else:
skip = inp

x+=skip
return x



class Xception(nn.Module):
"""
Xception optimized for the ImageNet dataset, as specified in
https://arxiv.org/pdf/1610.02357.pdf
"""
def __init__(self, num_classes=10):
""" Constructor
Args:
num_classes: number of classes
"""
super(Xception, self).__init__()


self.num_classes = num_classes

self.conv1 = nn.Conv2d(3, 32, 3,2, 0, bias=False)
self.bn1 = nn.BatchNorm2d(32)
self.relu = nn.ReLU(inplace=True)

self.conv2 = nn.Conv2d(32,64,3,bias=False)
self.bn2 = nn.BatchNorm2d(64)

self.block1=Block(64,128,2,2,start_with_relu=False,grow_first=True)
self.block2=Block(128,256,2,2,start_with_relu=True,grow_first=True)
self.block3=Block(256,728,2,2,start_with_relu=True,grow_first=True)

self.block4=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block5=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block6=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block7=Block(728,728,3,1,start_with_relu=True,grow_first=True)

self.block8=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block9=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block10=Block(728,728,3,1,start_with_relu=True,grow_first=True)
self.block11=Block(728,728,3,1,start_with_relu=True,grow_first=True)

self.block12=Block(728,1024,2,2,start_with_relu=True,grow_first=False)

self.conv3 = SeparableConv2d(1024,1536,3,1,1)
self.bn3 = nn.BatchNorm2d(1536)

#do relu here
self.conv4 = SeparableConv2d(1536,2048,3,1,1)
self.bn4 = nn.BatchNorm2d(2048)

self.fc = nn.Linear(2048, num_classes)


for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()





def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)

x = self.conv2(x)
x = self.bn2(x)
x = self.relu(x)

x = self.block1(x)
x = self.block2(x)
x = self.block3(x)
x = self.block4(x)
x = self.block5(x)
x = self.block6(x)
x = self.block7(x)
x = self.block8(x)
x = self.block9(x)
x = self.block10(x)
x = self.block11(x)
x = self.block12(x)

x = self.conv3(x)
x = self.bn3(x)
x = self.relu(x)

x = self.conv4(x)
x = self.bn4(x)
x = self.relu(x)

x = F.adaptive_avg_pool2d(x, (1, 1))
x = x.view(x.size(0), -1)
x = self.fc(x)

return x



def xception(pretrained=False,**kwargs):
"""
Construct Xception.
"""

model = Xception(**kwargs)
if pretrained:
model.load_state_dict(model_zoo.load_url(model_urls['xception']))
return model
4 changes: 2 additions & 2 deletions utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,8 +42,8 @@ def init_params(net):
init.constant(m.bias, 0)


_, term_width = os.popen('stty size', 'r').read().split()
term_width = int(term_width)
# _, term_width = os.popen('stty size', 'r').read().split()
term_width = 80

TOTAL_BAR_LENGTH = 65.
last_time = time.time()
Expand Down