-
Notifications
You must be signed in to change notification settings - Fork 72
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit ab9daeb
Showing
26 changed files
with
1,783 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2016 Andrey Rykov | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
[![license](https://img.shields.io/github/license/mashape/apistatus.svg)](LICENSE) | ||
|
||
## A port of SSD: Single Shot MultiBox Detector to Keras framework. | ||
Refer to [arXiv paper](http://arxiv.org/abs/1512.02325). | ||
|
||
- For forward pass for 300x300 model, please, follow `SSD.ipynb` for examples. | ||
- For training procedure for 300x300 model, please, follow `SSD_training.ipynb` for examples. | ||
- Moreover, in `testing_utils` folder there is a useful script to test `SSD` on video or on camera input. | ||
|
||
--- | ||
- Weights are ported from the original models and are available [here](https://mega.nz/#F!7RowVLCL!q3cEVRK9jyOSB9el3SssIA). You need `weights_SSD300.hdf5`, `weights_300x300_old.hdf5` is for the old version of architecture with 3x3 convolution for `pool6`. | ||
|
||
|
||
- Weights for chinese [Evernote link](https://app.yinxiang.com/shard/s51/nl/10565191/1944fa71-d815-46b3-ac3b-56ca58ca5b47?title=weights_SSD300.hdf5) | ||
|
||
|
||
This code was tested with `Keras` v1.2.2, `Tensorflow` v1.0.0, `OpenCV` v3.1.0-dev | ||
|
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
import cv2 | ||
import keras | ||
from keras.applications.imagenet_utils import preprocess_input | ||
from keras.backend.tensorflow_backend import set_session | ||
from keras.models import Model | ||
from keras.preprocessing import image | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
from scipy.misc import imread | ||
import tensorflow as tf | ||
|
||
import sys | ||
|
||
from ssd import SSD300 | ||
from ssd_utils import BBoxUtility | ||
|
||
plt.rcParams['figure.figsize'] = (8, 8) | ||
plt.rcParams['image.interpolation'] = 'nearest' | ||
|
||
np.set_printoptions(suppress=True) | ||
|
||
config = tf.ConfigProto() | ||
config.gpu_options.per_process_gpu_memory_fraction = 0.8 | ||
set_session(tf.Session(config=config)) | ||
|
||
voc_classes = ['Aeroplane', 'Bicycle', 'Bird', 'Boat', 'Bottle', | ||
'Bus', 'Car', 'Cat', 'Chair', 'Cow', 'Diningtable', | ||
'Dog', 'Horse','Motorbike', 'Person', 'Pottedplant', | ||
'Sheep', 'Sofa', 'Train', 'Tvmonitor'] | ||
NUM_CLASSES = len(voc_classes) + 1 | ||
|
||
input_shape=(300, 300, 3) | ||
model = SSD300(input_shape, num_classes=NUM_CLASSES) | ||
model.load_weights('weights_SSD300.hdf5', by_name=True) | ||
bbox_util = BBoxUtility(NUM_CLASSES) | ||
|
||
from PIL import Image | ||
|
||
def get_rectangle(img_file,img_name,target_file,target_label): | ||
|
||
inputs = [] | ||
images = [] | ||
img_path = '{}/{}.jpg'.format(img_file,img_name) | ||
im = Image.open(img_path) | ||
img = image.load_img(img_path, target_size=(300, 300)) | ||
img = image.img_to_array(img) | ||
images.append(imread(img_path)) | ||
inputs.append(img.copy()) | ||
inputs = preprocess_input(np.array(inputs)) | ||
|
||
preds = model.predict(inputs, batch_size=1, verbose=1) | ||
results = bbox_util.detection_out(preds) | ||
|
||
for i, img in enumerate(images): | ||
det_label = results[i][:, 0] | ||
det_conf = results[i][:, 1] | ||
det_xmin = results[i][:, 2] | ||
det_ymin = results[i][:, 3] | ||
det_xmax = results[i][:, 4] | ||
det_ymax = results[i][:, 5] | ||
|
||
top_indices = [i for i, conf in enumerate(det_conf) if conf >= 0.6] | ||
|
||
top_conf = det_conf[top_indices] | ||
top_label_indices = det_label[top_indices].tolist() | ||
top_xmin = det_xmin[top_indices] | ||
top_ymin = det_ymin[top_indices] | ||
top_xmax = det_xmax[top_indices] | ||
top_ymax = det_ymax[top_indices] | ||
|
||
for i in range(top_conf.shape[0]): | ||
xmin = int(round(top_xmin[i] * img.shape[1])) | ||
ymin = int(round(top_ymin[i] * img.shape[0])) | ||
xmax = int(round(top_xmax[i] * img.shape[1])) | ||
ymax = int(round(top_ymax[i] * img.shape[0])) | ||
|
||
label = int(top_label_indices[i]) | ||
label_name = voc_classes[label - 1] | ||
|
||
if label_name=="Person": | ||
region = im.crop((xmin, ymin, xmax, ymax)) | ||
region.save('{}/{}.jpg'.format(target_file,img_name)) | ||
|
||
import os | ||
import sys | ||
from tqdm import * | ||
target_label=sys.argv[1] | ||
img_file=sys.argv[2] | ||
target_file=sys.argv[3] | ||
|
||
if os.path.exists(target_file): | ||
pass | ||
else: | ||
os.mkdir(target_file) | ||
|
||
files = os.listdir(img_file) | ||
for file in tqdm(files): | ||
if 'jpg' in file: | ||
img_name=file[:-4] | ||
get_rectangle(img_file,img_name,target_file,target_label) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
import cv2 | ||
import keras | ||
from keras.applications.imagenet_utils import preprocess_input | ||
from keras.backend.tensorflow_backend import set_session | ||
from keras.models import Model | ||
from keras.preprocessing import image | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
from scipy.misc import imread | ||
import tensorflow as tf | ||
|
||
import sys | ||
|
||
from ssd import SSD300 | ||
from ssd_utils import BBoxUtility | ||
|
||
plt.rcParams['figure.figsize'] = (8, 8) | ||
plt.rcParams['image.interpolation'] = 'nearest' | ||
|
||
np.set_printoptions(suppress=True) | ||
|
||
config = tf.ConfigProto() | ||
config.gpu_options.per_process_gpu_memory_fraction = 0.8 | ||
set_session(tf.Session(config=config)) | ||
|
||
voc_classes = ['Aeroplane', 'Bicycle', 'Bird', 'Boat', 'Bottle', | ||
'Bus', 'Car', 'Cat', 'Chair', 'Cow', 'Diningtable', | ||
'Dog', 'Horse','Motorbike', 'Person', 'Pottedplant', | ||
'Sheep', 'Sofa', 'Train', 'Tvmonitor'] | ||
NUM_CLASSES = len(voc_classes) + 1 | ||
|
||
input_shape=(300, 300, 3) | ||
model = SSD300(input_shape, num_classes=NUM_CLASSES) | ||
model.load_weights('weights_SSD300.hdf5', by_name=True) | ||
bbox_util = BBoxUtility(NUM_CLASSES) | ||
|
||
from PIL import Image | ||
|
||
def get_rectangle(img_file,img_name,target_file,target_label): | ||
|
||
inputs = [] | ||
images = [] | ||
img_path = '{}/{}.jpg'.format(img_file,img_name) | ||
im = Image.open(img_path) | ||
img = image.load_img(img_path, target_size=(300, 300)) | ||
img = image.img_to_array(img) | ||
images.append(imread(img_path)) | ||
inputs.append(img.copy()) | ||
inputs = preprocess_input(np.array(inputs)) | ||
|
||
preds = model.predict(inputs, batch_size=1, verbose=1) | ||
results = bbox_util.detection_out(preds) | ||
|
||
for i, img in enumerate(images): | ||
det_label = results[i][:, 0] | ||
det_conf = results[i][:, 1] | ||
det_xmin = results[i][:, 2] | ||
det_ymin = results[i][:, 3] | ||
det_xmax = results[i][:, 4] | ||
det_ymax = results[i][:, 5] | ||
|
||
top_indices = [i for i, conf in enumerate(det_conf) if conf >= 0.6] | ||
|
||
top_conf = det_conf[top_indices] | ||
top_label_indices = det_label[top_indices].tolist() | ||
top_xmin = det_xmin[top_indices] | ||
top_ymin = det_ymin[top_indices] | ||
top_xmax = det_xmax[top_indices] | ||
top_ymax = det_ymax[top_indices] | ||
|
||
for i in range(top_conf.shape[0]): | ||
xmin = int(round(top_xmin[i] * img.shape[1])) | ||
ymin = int(round(top_ymin[i] * img.shape[0])) | ||
xmax = int(round(top_xmax[i] * img.shape[1])) | ||
ymax = int(round(top_ymax[i] * img.shape[0])) | ||
|
||
label = int(top_label_indices[i]) | ||
label_name = voc_classes[label - 1] | ||
|
||
if label_name==target_label: | ||
region = im.crop((xmin, ymin, xmax, ymax)) | ||
region.save('{}/{}.jpg'.format(target_file,img_name)) | ||
|
||
import os | ||
import sys | ||
from tqdm import * | ||
target_label=sys.argv[1] | ||
img_file=sys.argv[2] | ||
target_file=sys.argv[3] | ||
|
||
if os.path.exists(target_file): | ||
pass | ||
else: | ||
os.mkdir(target_file) | ||
|
||
files = os.listdir(img_file) | ||
for file in tqdm(files): | ||
if 'jpg' in file: | ||
img_name=file[:-4] | ||
get_rectangle(img_file,img_name,target_file,target_label) | ||
|
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Oops, something went wrong.