Skip to content

Commit

Permalink
Add utilities for detection when noise is correlated.
Browse files Browse the repository at this point in the history
  • Loading branch information
TallJimbo committed Dec 12, 2017
1 parent 23fdbe9 commit 00f40c1
Show file tree
Hide file tree
Showing 6 changed files with 484 additions and 0 deletions.
121 changes: 121 additions & 0 deletions include/lsst/meas/algorithms/CorrelatedNoiseDetection.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,121 @@
// -*- lsst-c++ -*-
/*
* LSST Data Management System
* Copyright 2017 LSST/AURA.
*
* This product includes software developed by the
* LSST Project (http://www.lsst.org/).
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the LSST License Statement and
* the GNU General Public License along with this program. If not,
* see <http://www.lsstcorp.org/LegalNotices/>.
*/

#ifndef LSST_MEAS_ALGORITHMS_CorrelatedNoiseDetection_h_INCLUDED
#define LSST_MEAS_ALGORITHMS_CorrelatedNoiseDetection_h_INCLUDED

#include <string>
#include <vector>

#include "lsst/afw/image/MaskedImage.h"

namespace lsst { namespace meas { namespace algorithms {

/**
* Estimate the noise correlation kernel of an image, assuming it is stationary.
*
* @param[in] image The image to be measured. The empirical covariance
* will be divided by the values in image's variance plane,
* and its mask will be used to reject pixels containing
* objects or artifacts.
* @param[in] radius Distance in pixels to which the correlation is measured
* on either side; the returned image will have dimensions
* (2*radius + 1, 2*radius + 1).
* @param[in] badBitMask A bit mask indicating pixels that should not be included
* in the measurement. Should generally include at least
* DETECTED.
*
* @return the noise correlation kernel: an image in which the central pixel
* represents the fraction of the total variance/covariance in the variance,
* and neighboring pixels contain the correlation at different offsets.
*/
afw::image::Image<float> measureCorrelationKernel(
afw::image::MaskedImage<float> const & image,
int radius,
afw::image::MaskPixel badBitMask
);

/**
* Estimate the noise correlation kernel of an image, assuming it is stationary.
*
* @param[in] image The image to be measured. The empirical covariance
* will be divided by the values in image's variance plane,
* and its mask will be used to reject pixels containing
* objects or artifacts.
* @param[in] radius Distance in pixels to which the correlation is measured
* on either side; the returned image will have dimensions
* (2*radius + 1, 2*radius + 1).
* @param[in] badMaskPlanes A list of mask planenames indicating pixels that
* should not be included in the measurement.
* Should generally include at least DETECTED.
*
* @return the noise correlation kernel: an image in which the central pixel
* represents the fraction of the total variance/covariance in the variance,
* and neighboring pixels contain the correlation at different offsets.
*/
afw::image::Image<float> measureCorrelationKernel(
afw::image::MaskedImage<float> const & image,
int radius,
std::vector<std::string> const & badMaskPlanes
);


/**
* Fit an optimal detection kernel for a PSF that corrects for correlated noise.
*
* This is the same as the kernel that yields the PSF when convolved with the
* correlation kernel.
*
* The returned kernel cannot be used in detection in quite the same way as the
* PSF is used in detection on images with noise correlated noise.
* In the uncorrelated noise case with image @f$z@f$, PSF @f$\phi@f$, and
* per-pixel variance @f$\sigma^2@f$, the significance image is
* @f[
* \nu = \frac{\phi \ast z}{\sigma \sqrt{\phi \cdot \phi}}
* @f]
* In the correlated noise case, with @f$\psi@f$ the kernel computed by this
* function, the significance image is
* @f[
* \nu = \frac{\psi \ast z}{\sigma \sqrt{\phi \cdot \psi}}
* @f]
* (note the difference in the denominator).
*
* @param[in] psf Image of the PSF model.
* @param[in] correlation Noise correlation kernel, of the sort estimated by
* measureCorrelationKernel.
* @param[in] radius Radius of the detection kernel image in pixels.
* The returned image will have dimensions
* (2*radius + 1, 2*radius + 1).
*
* @return an image containing the optimal detection kernel.
*/
afw::image::Image<double> fitGeneralDetectionKernel(
afw::image::Image<double> const & psf,
afw::image::Image<float> const & correlation,
int radius
);


}}} // namespace lsst::meas::algorithms

#endif // !LSST_MEAS_ALGORITHMS_CorrelatedNoiseDetection_h_INCLUDED
1 change: 1 addition & 0 deletions python/lsst/meas/algorithms/SConscript
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@ scripts.BasicSConscript.pybind11(["binnedWcs",
"cr",
"coaddBoundedField",
"coaddPsf/coaddPsf",
"correlatedNoiseDetection",
"doubleGaussianPsf",
"imagePsf",
"interp",
Expand Down
1 change: 1 addition & 0 deletions python/lsst/meas/algorithms/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,7 @@
from .loadIndexedReferenceObjects import *
from .indexerRegistry import *
from .reserveSourcesTask import *
from .correlatedNoiseDetection import *

from .version import *

Expand Down
66 changes: 66 additions & 0 deletions python/lsst/meas/algorithms/correlatedNoiseDetection.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
/*
* LSST Data Management System
* Copyright 2017 LSST/AURA.
*
* This product includes software developed by the
* LSST Project (http://www.lsst.org/).
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the LSST License Statement and
* the GNU General Public License along with this program. If not,
* see <https://www.lsstcorp.org/LegalNotices/>.
*/
#include "pybind11/pybind11.h"
#include "pybind11/stl.h"

#include "lsst/meas/algorithms/CorrelatedNoiseDetection.h"

namespace py = pybind11;
using namespace pybind11::literals;

namespace lsst {
namespace meas {
namespace algorithms {

PYBIND11_PLUGIN(correlatedNoiseDetection) {
py::module::import("lsst.afw.image");

py::module mod("correlatedNoiseDetection");

mod.def(
"measureCorrelationKernel",
(afw::image::Image<float> (*)(
afw::image::MaskedImage<float> const &,
int,
afw::image::MaskPixel
))&measureCorrelationKernel,
"image"_a, "radius"_a, "badBitMask"_a
);

mod.def(
"measureCorrelationKernel",
(afw::image::Image<float> (*)(
afw::image::MaskedImage<float> const &,
int,
std::vector<std::string> const &
))&measureCorrelationKernel,
"image"_a, "radius"_a, "badMaskPlanes"_a
);

mod.def("fitGeneralDetectionKernel", &fitGeneralDetectionKernel, "psf"_a, "correlations"_a, "radius"_a);

return mod.ptr();
}

} // algorithms
} // meas
} // lsst
192 changes: 192 additions & 0 deletions src/CorrelatedNoiseDetection.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,192 @@
// -*- LSST-C++ -*-
/*
* LSST Data Management System
* Copyright 2017 LSST/AURA.
*
* This product includes software developed by the
* LSST Project (http://www.lsst.org/).
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the LSST License Statement and
* the GNU General Public License along with this program. If not,
* see <http://www.lsstcorp.org/LegalNotices/>.
*/

#include "lsst/pex/exceptions.h"
#include "lsst/afw/math/LeastSquares.h"
#include "lsst/meas/algorithms/CorrelatedNoiseDetection.h"

namespace lsst { namespace meas { namespace algorithms {


afw::image::Image<float> measureCorrelationKernel(
afw::image::MaskedImage<float> const & mi,
int radius,
afw::image::MaskPixel badBitMask
) {
afw::image::Image<float> result(2*radius + 1, 2*radius + 1);
afw::image::Image<int> count(result.getDimensions());
int const width = mi.getWidth();
int const height = mi.getHeight();
// iterate over pixels in the MaskedImage, skipping any that meet our bad mask criteria
for (int y1 = 0; y1 < height; ++y1) {
int const y2a = std::max(0, y1 - radius);
int const y2b = std::min(height, y1 + radius + 1);
for (int x1 = 0; x1 < width; ++x1) {
if ((*mi.getMask())(x1, y1) & badBitMask) {
continue;
}
float z = (*mi.getImage())(x1, y1) / (*mi.getVariance())(x1, y1);
// iterate over neighboring pixels, with bounds set to avoid image boundaries
int const x2a = std::max(0, x1 - radius);
int const x2b = std::min(height, x1 + radius + 1);
for (int y2 = y2a; y2 < y2b; ++y2) {
auto miIter = mi.row_begin(y2) + x2a;
auto outIter = result.row_begin(radius + y2 - y1) + radius + x2a - x1;
auto countIter = count.row_begin(radius + y2 - y1) + radius + x2a - x1;
for (int x2 = x2a; x2 < x2b; ++x2, ++miIter, ++outIter, ++countIter) {
if (miIter.mask() & badBitMask) {
continue;
}
*outIter += z*miIter.image();
*countIter += 1;
}
}
}
}
result.getArray().deep() /= count.getArray();
result.setXY0(-radius, -radius);
return result;
}

afw::image::Image<float> measureCorrelationKernel(
afw::image::MaskedImage<float> const & image,
int radius,
std::vector<std::string> const & badMaskPlanes
) {
afw::image::MaskPixel mask = 0x0;
for (auto plane : badMaskPlanes) {
mask |= image.getMask()->getPlaneBitMask(plane);
}
return measureCorrelationKernel(image, radius, mask);
}


namespace {

afw::geom::Extent2I getOddBoxHalfWidth(afw::geom::Box2I const & box, std::string const & name) {
afw::geom::Extent2I r((box.getWidth() - 1) / 2, (box.getHeight() - 1) / 2);
if (r.getX()*2 + 1 != box.getWidth()) {
throw LSST_EXCEPT(
pex::exceptions::InvalidParameterError,
name + " image width must be an odd integer"
);
}
if (r.getY()*2 + 1 != box.getHeight()) {
throw LSST_EXCEPT(
pex::exceptions::InvalidParameterError,
name + " image height must be an odd integer"
);
}
return r;
}

} // anonymous


afw::image::Image<double> fitGeneralDetectionKernel(
afw::image::Image<double> const & psf,
afw::image::Image<float> const & correlation,
int radius
) {
auto const psfR = getOddBoxHalfWidth(psf.getBBox(), "PSF");
auto const corrR = getOddBoxHalfWidth(correlation.getBBox(), "Correlation kernel");
afw::geom::Extent2I const outR(radius, radius);
if (psfR.getX() <= corrR.getX()) {
throw LSST_EXCEPT(
pex::exceptions::InvalidParameterError,
"PSF image width must be greater than correlation kernel width"
);
}
if (psfR.getY() <= corrR.getY()) {
throw LSST_EXCEPT(
pex::exceptions::InvalidParameterError,
"PSF image height must be greater than correlation kernel height"
);
}
if (psfR.getX() <= outR.getX()) {
throw LSST_EXCEPT(
pex::exceptions::InvalidParameterError,
"PSF image width must be greater than output kernel width"
);
}
if (psfR.getY() <= outR.getY()) {
throw LSST_EXCEPT(
pex::exceptions::InvalidParameterError,
"PSF image height must be greater than output kernel height"
);
}

int const psfN = (psfR.getX()*2 + 1)*(psfR.getY()*2 + 1);
int const outN = (outR.getX()*2 + 1)*(outR.getY()*2 + 1);

// Get locators at the center of each image, so we can use indices with
// the origin at the center and make the code easier to read.
auto psfL = psf.xy_at(psfR.getX(), psfR.getY());
auto corrL = correlation.xy_at(corrR.getX(), corrR.getY());

// rhs is the PSF image, with rows and columns flattened into one dimension
Eigen::VectorXd rhs = Eigen::VectorXd::Zero(psfN);

// matrix represents convolution with the correlated noise kernel image
Eigen::MatrixXd matrix = Eigen::MatrixXd::Zero(psfN, outN);
int xyN = 0;
for (int y = -psfR.getY(); y <= psfR.getY(); ++y) {
for (int x = -psfR.getX(); x <= psfR.getX(); ++x) {
int ijN = 0;
for (int i = -outR.getY(); i <= outR.getY(); ++i) {
for (int j = -outR.getX(); j <= outR.getX(); ++j) {
// Could move these checks into the inner loop bounds for performance,
// but this is easier to read and probably fast enough.
if (std::abs(y - i) <= corrR.getY() && std::abs(x - j) <= corrR.getX()) {
matrix(xyN, ijN) = corrL(x - j, y - i);
}
++ijN;
}
}
rhs[xyN] = psfL(x, y);
++xyN;
}
}

// solve for the kernel that produces the PSF when convolved with the
// noise correlation kernel
auto lstsq = afw::math::LeastSquares::fromDesignMatrix(matrix, rhs);
auto solution = lstsq.getSolution();

// copy the result from the flattened solution vector into an image
afw::image::Image<double> result(outR.getX()*2 + 1, outR.getY()*2 + 1);
auto outL = result.xy_at(outR.getX(), outR.getY());
xyN = 0;
for (int y = -outR.getY(); y <= outR.getY(); ++y) {
for (int x = -outR.getX(); x <= outR.getX(); ++x) {
outL(x, y) = solution[xyN];
++xyN;
}
}

result.setXY0(-outR.getX(), -outR.getY());
return result;
}


}}} // namespace lsst::meas::algorithms
Loading

0 comments on commit 00f40c1

Please sign in to comment.