Lixin Xue
·
Chen Guo
·
Chengwei Zheng
·
Fangjinhua Wang
·
Tianjian Jiang
Hsuan-I Ho
·
Manuel Kaufmann
·
Jie Song
·
Otmar Hilliges
HSR jointly reconstructs dynamic humans and static scenes from monocular RGB videos.
The codebase is tested with Ubuntu 22.04, CUDA 12.1 and PyTorch 2.1.1. Other versions should also work fine.
git clone https://github.com/lxxue/HSR.git && cd HSR
conda create -n hsr python=3.10.4
conda activate hsr
# install torch
pip install torch==2.1.1 torchvision==0.16.1 --index-url https://download.pytorch.org/whl/cu121
# install prebuilt binaries for pytorch3d and kaolin
pip install fvcore==0.1.5.post20221221 iopath==0.1.10
pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt211/download.html
pip install kaolin==0.15.0 -f https://nvidia-kaolin.s3.us-east-2.amazonaws.com/torch-2.1.1_cu121.html
# install other dependencies and build custom ops
pip install cython==3.0.11
pip install -e .
Download SMPL model (version 1.1.0 for Python 2.7 (female/male/neutral)) and move them to the corresponding places:
mkdir -p hsr/checkpoints/smpl_body_models
mv /path_to_smpl_models/basicmodel_f_lbs_10_207_0_v1.1.0.pkl hsr/checkpoints/smpl_body_models/SMPL_FEMALE.pkl
mv /path_to_smpl_models/basicmodel_m_lbs_10_207_0_v1.1.0.pkl hsr/checkpoints/smpl_body_models/SMPL_MALE.pkl
mv /path_to_smpl_models/basicmodel_neutral_lbs_10_207_0_v1.1.0.pkl hsr/checkpoints/smpl_body_models/SMPL_NEUTRAL.pkl
Download preprocessed demo data and put them under data folder:
wget https://files.ait.ethz.ch/projects/hsr/real.zip
unzip real.zip -d data
rm real.zip
Configure paths in hsr/confs/base.yaml
data_root: /path_to_HSR/data
result_root: /path_to_HSR/result
Navigate to the hsr folder and run the script for training and rendering on the demo data:
cd hsr
bash cmd.sh
You can continue training or only render all frames by uncommenting the corresponding lines in cmd.sh:
# extra_args="model.is_continue=True"
# extra_args="test_only=True"
We will gradually complete the codebase and provide more detailed instructions.
- Code release for preprocessing custom data (Expected: End of December)
- Release of NeuMan dataset checkpoints for benchmarking (Expected: Mid-January)
We use code from other research projects, including Vid2Avatar, MonoSDF, and NeuMan. We sincerely thank the authors for their awesome work!
Please consider citing our work if you find our research useful for your work:
@inproceedings{xue2024hsr,
author={Xue, Lixin and Guo, Chen and Zheng, Chengwei and Wang, Fangjinhua and Jiang, Tianjian and Ho, Hsuan-I and Kaufmann, Manuel and Song, Jie and Hilliges Otmar},
title={{HSR:} Holistic 3D Human-Scene Reconstruction from Monocular Videos},
booktitle={European Conference on Computer Vision (ECCV)},
year={2024}
}