Skip to content

Latest commit

 

History

History
21 lines (18 loc) · 1.23 KB

README.md

File metadata and controls

21 lines (18 loc) · 1.23 KB

GIL - Generalized Image Learning

Purpose

This repo houses the initial scripts for building a deep learning app on BioData Catalyst powered by Seven Bridges. These scripts will be used to test training scalability, among other issues.

Main script

train.py creates a VGG-16 model for single-channel image classification.

Input arguments:

Arg Description Type Values Required
--data_csv Path to CSV file pointing to images/labels string YES
--image_column Column name for images string YES
--label_column Column name for labels string YES
--test_ratio Percentage for testing data float 0.3 (Default)
--epochs Number of training epochs int 15 (Default)
--batch_size Training batch size int 8 (Default)
--output Specify file name for output string 'model' (Default)
--auto_resize Auto-resize to min height/width of image set store_true

Debug

get_sizes.py --data_csv /path/to/file.csv --image_column image_path_column_name will create a CSV containing the image name, SimpleITK image shape, and Numpy array shape. It will also print this information to the console.