Skip to content

Commit

Permalink
clean up proof a little
Browse files Browse the repository at this point in the history
  • Loading branch information
hejohns committed Dec 10, 2024
1 parent aa56481 commit d7e1dbd
Showing 1 changed file with 12 additions and 19 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -30,8 +30,8 @@ module _
module C = CartesianCategoryNotation C
module Cᴰ = CartesianCategoryᴰNotation Cᴰ
module Cᴰᴰ = CartesianCategoryᴰNotation Cᴰᴰ
module Q = HomᴰReasoning (Cᴰ .fst)
module R = HomᴰReasoning (Cᴰᴰ .fst)
module R = HomᴰReasoning (Cᴰ .fst)
module Rᴰ = HomᴰReasoning (Cᴰᴰ .fst)
module Lemma
{x c c' : C.ob}
{h : C.Hom[ x , c C.×bp c' ]}
Expand Down Expand Up @@ -64,36 +64,29 @@ module _
p : Σhᴰ ≡ Σh₁,h₂ᴰ
p = ΣPathP (C.×η ,
congP₂ (λ _ Cᴰ._,pᴰ'_ )
(Q.rectify (Q.≡out (Q.reind-filler _ _)))
(Q.rectify (Q.≡out (Q.reind-filler _ _))))
(R.rectify (R.≡out (R.reind-filler _ _)))
(R.rectify (R.≡out (R.reind-filler _ _))))

hᴰᴰ : Cᴰᴰ.Hom[ h , hᴰ ][ xᴰᴰ , cᴰᴰ Cᴰᴰ.×ᴰ c'ᴰᴰ ]
hᴰᴰ = R.reind (sym p) h₁,h₂ᴰᴰ
reind-filler : h₁,h₂ᴰᴰ Cᴰᴰ.≡[ sym p ] hᴰᴰ
reind-filler = R.≡out (R.reind-filler _ _)
hᴰᴰ = Rᴰ.reind (sym p) h₁,h₂ᴰᴰ
-- rectify to be over an arbitrary path that isn't 700 lines long
-- so we can make these lemmas opaque
β₁ : hᴰᴰ Cᴰᴰ.⋆ᴰ Cᴰᴰ.π₁ᴰ Cᴰᴰ.≡[ ΣPathP (refl , Cᴰ.×β₁ᴰ') ] h₁ᴰᴰ
β₁ = R.rectify (R.≡out
(R.≡in (congP (λ _ Cᴰᴰ._⋆ᴰ Cᴰᴰ.π₁ᴰ) (symP reind-filler))
R.≡in (Cᴰᴰ.×β₁ᴰ {f₁ᴰ = h₁ᴰᴰ} {f₂ᴰ = h₂ᴰᴰ})))
β₁ = Rᴰ.rectify (Rᴰ.≡out
(Rᴰ.⟨ sym (Rᴰ.reind-filler _ _) ⟩⋆⟨ refl ⟩
Rᴰ.≡in (Cᴰᴰ.×β₁ᴰ {f₁ᴰ = h₁ᴰᴰ} {f₂ᴰ = h₂ᴰᴰ})))
β₂ : hᴰᴰ Cᴰᴰ.⋆ᴰ Cᴰᴰ.π₂ᴰ Cᴰᴰ.≡[ ΣPathP (refl , Cᴰ.×β₂ᴰ') ] h₂ᴰᴰ
β₂ = R.rectify (R.≡out
(R.≡in (congP (λ _ Cᴰᴰ._⋆ᴰ Cᴰᴰ.π₂ᴰ) (symP reind-filler)) ∙
R.≡in (Cᴰᴰ.×β₂ᴰ {f₁ᴰ = h₁ᴰᴰ} {f₂ᴰ = h₂ᴰᴰ})))
--η : {hᴰᴰ' : Cᴰᴰ.Hom[ h , hᴰ ][ xᴰᴰ , cᴰᴰ Cᴰᴰ.×ᴰ c'ᴰᴰ ]}
-- → (h₁ᴰᴰ Cᴰᴰ.≡[ ΣPathP (refl , symP Cᴰ.×β₁ᴰ') ] hᴰᴰ' Cᴰᴰ.⋆ᴰ Cᴰᴰ.π₁ᴰ)
-- → (h₂ᴰᴰ Cᴰᴰ.≡[ ΣPathP (refl , symP Cᴰ.×β₂ᴰ') ] hᴰᴰ' Cᴰᴰ.⋆ᴰ Cᴰᴰ.π₂ᴰ)
-- → hᴰᴰ ≡ hᴰᴰ'
--η pᴰᴰ qᴰᴰ = R.rectify (R.≡out (R.≡in (symP reind-filler) ∙ R.≡in (Cᴰᴰ.×η''ᴰ pᴰᴰ qᴰᴰ)))
β₂ = Rᴰ.rectify (Rᴰ.≡out
(Rᴰ.⟨ sym (Rᴰ.reind-filler _ _) ⟩⋆⟨ refl ⟩ ∙
Rᴰ.≡in (Cᴰᴰ.×β₂ᴰ {f₁ᴰ = h₁ᴰᴰ} {f₂ᴰ = h₂ᴰᴰ})))
η' : {hᴰ'}
{pᴰ : h₁ᴰ ≡ hᴰ' Cᴰ.⋆ᴰ Cᴰ.π₁ᴰ}
{qᴰ : h₂ᴰ ≡ hᴰ' Cᴰ.⋆ᴰ Cᴰ.π₂ᴰ}
{hᴰ'ᴰ : Cᴰᴰ.Hom[ h , hᴰ' ][ xᴰᴰ , cᴰᴰ Cᴰᴰ.×ᴰ c'ᴰᴰ ]}
(h₁ᴰᴰ Cᴰᴰ.≡[ ΣPathP (refl , pᴰ) ] hᴰ'ᴰ Cᴰᴰ.⋆ᴰ Cᴰᴰ.π₁ᴰ)
(h₂ᴰᴰ Cᴰᴰ.≡[ ΣPathP (refl , qᴰ) ] hᴰ'ᴰ Cᴰᴰ.⋆ᴰ Cᴰᴰ.π₂ᴰ)
hᴰᴰ Cᴰᴰ.≡[ ΣPathP (refl , Cᴰ.×η''ᴰ' (sym pᴰ) (sym qᴰ)) ] hᴰ'ᴰ
η' pᴰᴰ qᴰᴰ = R.rectify (R.≡out (R.≡in (symP reind-filler) ∙ R.≡in (Cᴰᴰ.×η''ᴰ pᴰᴰ qᴰᴰ)))
η' pᴰᴰ qᴰᴰ = Rᴰ.rectify (Rᴰ.≡out (sym (Rᴰ.reind-filler _ _) ∙ Rᴰ.≡in (Cᴰᴰ.×η''ᴰ pᴰᴰ qᴰᴰ)))
∫Cᴰ : CartesianCategoryᴰ C (ℓ-max ℓCᴰ ℓCᴰᴰ) (ℓ-max ℓCᴰ' ℓCᴰᴰ')
∫Cᴰ .fst = TCᴰ.∫Cᴰ (Cᴰ .fst) (Cᴰᴰ .fst)
∫Cᴰ .snd .fst .vertexᴰ = _ , Cᴰᴰ.𝟙ᴰ
Expand Down

0 comments on commit d7e1dbd

Please sign in to comment.