Skip to content

Commit

Permalink
update regression milestone project
Browse files Browse the repository at this point in the history
  • Loading branch information
mrdbourke committed Oct 30, 2024
1 parent 26375e2 commit 5818378
Showing 1 changed file with 6 additions and 8 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -5724,14 +5724,12 @@
"\n",
"There are several encoders available for different use cases.\n",
"\n",
"TK - does this table show up?\n",
"\n",
"| **Encoder** | **Description** | **Use case** | **For use on** |\n",
"|:-------------|:-----------------|:--------------|:----------------|\n",
"| [LabelEncoder](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html#sklearn.preprocessing.LabelEncoder) | Encode target labels with values between 0 and n_classes-1. | Useful for turning classification target values into numeric representations. | Target labels. |\n",
"| [OneHotEncoder](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html#onehotencoder) | Encode categorical features as a [one-hot numeric array](https://en.wikipedia.org/wiki/One-hot). | Turns every positive class of a unique category into a 1 and every negative class into a 0. | Categorical variables/features. |\n",
"| [OrdinalEncoder](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html#ordinalencoder) | Encode categorical features as an integer array. | Turn unique categorical values into a range of integers, for example, 0 maps to 'cat', 1 maps to 'dog', etc. | Categorical variables/features. |\n",
"| [TargetEncoder](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.TargetEncoder.html#targetencoder) | Encode regression and classification targets into a shrunk estimate of the average target values for observations of the category. Useful for converting targets into a certain range of values. | Target variables. |\n",
"| Encoder | Description | Use case | For use on |\n",
"| ----- | ----- | ----- | ----- |\n",
"| [`LabelEncoder`](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html#sklearn.preprocessing.LabelEncoder) | Encode target labels with values between 0 and n_classes-1. | Useful for turning classification target values into numeric representations. | Target labels. |\n",
"| [`OneHotEncoder`](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html#onehotencoder) | Encode categorical features as a [one-hot numeric array](https://en.wikipedia.org/wiki/One-hot). | Turns every positive class of a unique category into a 1 and every negative class into a 0. | Categorical variables/features. |\n",
"| [`OrdinalEncoder`](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html#ordinalencoder) | Encode categorical features as an integer array. | Turn unique categorical values into a range of integers, for example, 0 maps to 'cat', 1 maps to 'dog', etc. | Categorical variables/features. |\n",
"| [`TargetEncoder`](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.TargetEncoder.html#targetencoder) | Encode regression and classification targets into a shrunk estimate of the average target values for observations of the category. | Useful for converting targets into a certain range of values. | Target variables. |\n",
"\n",
"For our case, we're going to start with `OrdinalEncoder`.\n",
"\n",
Expand Down

0 comments on commit 5818378

Please sign in to comment.