Skip to content

mspils/wavo-torch-public

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

wavo-torch

Usage

Currently only main_hyper.py and predict.py work. Not sure about the Dockerfile.
The first for training models and doing hyperparameter optimization, the second for inference.
For the hyperparameter optimization you may need to modify the source code to change the variable storage_base, where optuna logs the experiments to. And create the parent folder.

Without CUDA the whole thing will be VERY slow.

Example usage:

python main_hyper.py ../data/Halstenbek.csv WHalstenbek_pegel_cm ../models/halstenbek/ 50 --expname experiment_1 --storagename database_01 --pruning
python src/predict.py --config configs/example_torch_single.ini single

Setup:

git clone 
cd wavo-torch
conda create --name wavo python=3.8
conda activate wavo
pip install -r requirements.txt

About

Alpha version of a flood forecasting system

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published