Skip to content

Commit

Permalink
First commit migration from spt-data (#356)
Browse files Browse the repository at this point in the history
  • Loading branch information
jimmymathews authored Sep 20, 2024
1 parent 60abc81 commit d1d1537
Show file tree
Hide file tree
Showing 31 changed files with 1,973 additions and 0 deletions.
76 changes: 76 additions & 0 deletions data_curation/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
The scripts in this directory are used to organize datasets before importing into a PostgreSQL database for the SPT application or analysis.

1. [Doing import / upload](#doing-import--upload)
2. [Doing import / upload for just one dataset](#doing-import--upload-for-just-one-dataset)
3. [Import without using the wrapper scripts](#import-without-using-the-wrapper-scripts)
4. [Show all progress](#show-progress)

Datasets are stored in subdirectories of `datasets/`. The procedure for adding a new dataset is documented in [`datasets/template/README.md`](datasets/template/README.md).

## Doing import / upload
A script which does a mass import of all available datasets is provided here as `import_datasets.sh`. It assumes that the [`spatialprofilingtoolbox` Python package](https://pypi.org/project/spatialprofilingtoolbox/) has been installed.

The usage is, for example:
```bash
./import_datasets.sh ~/.spt_db.config.local --drop-first
```
- `~/.spt_db.config.local` is an example name of a [database configuration file](https://github.com/nadeemlab/SPT/blob/main/spatialprofilingtoolbox/workflow/assets/.spt_db.config.template).
- The `--drop-first` option causes dropping/deleting a dataset with the same study name as one which is about to be uploaded. Without this option, upload will only take place if the dataset is not already in the database.

## Doing import / upload for just one dataset
For example:

```bash
./import_datasets.sh ~/.spt_db.config.local --drop-first moldoveanu
```
or
```bash
./import_datasets.sh ~/.spt_db.config.local --no-drop-first moldoveanu
```

## Import without using the wrapper
The import-all-datasets-here script is provided for convenience only, as a wrapper around `spt` CLI commands.

For one dataset you may prefer to use your own custom script templated on the following:

```bash
mkdir rundir; cd rundir
spt workflow configure --workflow="tabular import" --config-file=workflow.config
./run.sh
```

For the above, the `workflow.config` file should look something like this:
```ini
[general]
db_config_file = /Users/username/.spt_db.config.local

[database visitor]
study_name = Melanoma CyTOF ICI

[tabular import]
input_path = datasets/moldoveanus/generated_artifacts
```

If you wish for Nextflow to pull directly from S3, rather than a local directory like `.../generated_artifacts`, `workflow.config` may look like this instead:

```ini
[general]
db_config_file = /Users/username/.spt_db.config.local

[database visitor]
study_name = Melanoma CyTOF ICI

[tabular import]
input_path = s3://bucketname/moldoveanu
```

In the S3 case, you would have to make sure that credentials are available. Currently Nextflow requires, in the case of session-specific credentials, a "profile" `~/.aws/credentials`, usually the profile named `default`.

You can monitor progress by watching the Nextflow logs:

```bash
tail -f -n1000 work/*/*.command.log
```

## Show all progress
By default `import_datasets.sh` is parallelized at the per-dataset level. To see basic progress across , use `./show_progress.sh` .
Empty file.
171 changes: 171 additions & 0 deletions data_curation/convenience_scripts/bimodality_assessor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,171 @@
"""
See gist:
https://gist.github.com/jimmymathews/ca0a03d04dcc7265eac55a66ec20d67a
"""

import warnings

import numpy as np
import pandas as pd
from numpy.typing import ArrayLike, NDArray

from sklearn.mixture import GaussianMixture # type: ignore
from sklearn.exceptions import ConvergenceWarning # type: ignore

warnings.simplefilter('error', ConvergenceWarning)


class BimodalityAssessor:
"""Assess bimodality for a univariate feature."""

def __init__(self, feature_values: ArrayLike, quiet: bool = False) -> None:
self.quiet = quiet
self._initialize_estimator()
self._record_feature_values(feature_values)
self._attempt_fitting()

def _initialize_estimator(self) -> None:
self.estimator = GaussianMixture(
n_components=BimodalityAssessor._number_populations(),
max_iter=20,
random_state=0,
)
self.estimator.means_init = np.array([[-1], [1]])

def _record_feature_values(self, feature_values: ArrayLike) -> None:
self.feature_array = BimodalityAssessor._convert_to_tall_numpy(feature_values)
self.feature_values = feature_values

def _attempt_fitting(self) -> None:
try:
self.get_estimator().fit(self.get_feature_array())
self.convergence_failure = False
except ConvergenceWarning:
if not self.quiet:
print('Gaussian mixture model estimation failed to converge.')
self.convergence_failure = True

def failed_to_converge(self) -> bool:
return self.convergence_failure

def get_feature_assignment_table_markdown(self) -> str:
return self.get_feature_assignment_table().to_markdown()

def get_feature_assignment_table(self) -> pd.DataFrame:
dataframe = pd.DataFrame({
'Feature': self.get_feature_values_list(),
'GMM likelihood-based population label': self.get_dichotomized_feature(),
})
return dataframe

def get_dichotomized_feature(self, use_threshold: bool = False, original = None) -> list[int]:
if use_threshold:
threshold = self.infer_effective_threshold(weighted_mean=True)
feature_values = self.feature_values if original is None else original
return [
1 if value >= threshold else 0
for value in feature_values
]
return self.get_estimator().predict(self.get_feature_array())

def infer_effective_threshold(self, weighted_mean: bool = False) -> float | str:
if weighted_mean:
means = self.get_means()
deviations = self.get_standard_deviations()
weights = [1/d for d in deviations]
return (means[0]*weights[0] + means[1]*weights[1]) / (weights[0] + weights[1])
dichotomized_feature = self.get_dichotomized_feature()
if len(set(dichotomized_feature)) == 1:
return 'Only 1 label'
pairs = sorted([
(self.get_feature_values_list()[i], dichotomized_feature[i])
for i in range(len(dichotomized_feature))
], key=lambda pair: (pair[1], pair[0]))
lower_limit = None
upper_limit = None
inconsistent = False
for i in range(len(pairs) - 1):
feature_value, discrete_value = pairs[i]
next_feature_value, next_discrete_value = pairs[i + 1]
if (discrete_value == 0 and next_discrete_value == 1) or (discrete_value == 1 and next_discrete_value == 0):
if (lower_limit is None) and (upper_limit is None):
lower_limit = feature_value
upper_limit = next_feature_value
else:
inconsistent = True
if inconsistent:
print('\n'.join([str(p) for p in pairs]))
return 'Assignments inconsistent with thresholding'
if (lower_limit is None) and (upper_limit is None):
return 'No threshold behavior detected somehow'
return (lower_limit + upper_limit) / 2

def get_number_of_errors(self, answers: list[int]) -> int:
dichotomized_feature = self.get_dichotomized_feature()
number_errors = sum(
1
for i in range(len(dichotomized_feature))
if dichotomized_feature[i] == answers[i]
)
return min(number_errors, len(answers) - number_errors)

def get_weights(self) -> list[float]:
return list(self.get_estimator().weights_)

@classmethod
def _number_populations(cls) -> int:
return 2

@classmethod
def _convert_to_tall_numpy(cls, feature_values: ArrayLike) -> NDArray[np.float64]:
return np.array(feature_values).reshape(-1, 1)

def get_estimator(self) -> GaussianMixture:
return self.estimator

def get_feature_array(self) -> NDArray[np.float64]:
return self.feature_array

def get_feature_values_list(self) -> list[float]:
return self.get_feature_array().transpose()[0]

def get_average_mahalanobis_distance(self) -> float:
means = self.get_means()
standard_deviations = self.get_standard_deviations()
distance1 = abs(means[0] - means[1]) / standard_deviations[0]
distance2 = abs(means[1] - means[0]) / standard_deviations[1]
weights = self.get_weights()
return weights[0] * weights[1] * (distance1 + distance2) / 2

def get_means(self) -> list[float]:
return list(self.get_estimator().means_)

def get_standard_deviations(self) -> list[float]:
return [np.sqrt(s) for s in self.get_estimator().covariances_]


def create_bimodal_vector(s: pd.Series, downsample: int | None = None, quiet: bool = False) -> pd.Series:
"""Create a bimodal vector from a univariate feature.
Parameters
----------
s : pd.Series
A univariate feature.
"""
if downsample is not None:
subsample = s.sample(min(downsample, len(s)))
else:
subsample = s
assessor = BimodalityAssessor(subsample, quiet=quiet)
quality = assessor.get_average_mahalanobis_distance()
if quality >= 0.5:
return assessor.get_dichotomized_feature(use_threshold=True, original=s)
threshold = np.nanmean(s)

def thresholding(value):
if np.isnan(value):
return 0
return 1 if value >= threshold else 0

return s.apply(thresholding)
32 changes: 32 additions & 0 deletions data_curation/convenience_scripts/configure_all_imports.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
#!/bin/bash

source convenience_scripts/verifications_and_configurations.sh

dbconfigargument="$1"
dbconfig=$(handle_dbconfig_argument $dbconfigargument)

check_exists_else_fail "$dbconfig"
check_for_spt_availability
create_run_directory

one_inclusion="$2"
if [[ "$one_inclusion" == "" ]];
then
one_inclusion="ALL_DATASET_DIRECTORY_HANDLES"
fi

SECONDS=0
if [[ "$one_inclusion" == "ALL_DATASET_DIRECTORY_HANDLES" ]];
then
datasets=$(get_available_dataset_handles)
else
datasets=$(get_available_dataset_handles | grep -o "$one_inclusion")
fi
create_run_directories_for_datasets "$datasets" $PWD
configure_run_directories_for_datasets "$datasets" $PWD

echo "Run directory structure:"
tree -L 3 runs/
echo ""

echo "Configuration took $SECONDS seconds ("$(( SECONDS / 60 ))" minutes)."
Loading

0 comments on commit d1d1537

Please sign in to comment.