What's Changed
Quantization Aware Training 🔥
-i
, --data
: path to data.yaml
-b
, --batch
: Training batch size
-e
, --epoch
: number of training epochs
-s
, --size
: Input image size
-j
, --worker
: Training number of workers
-m
, --model
: Model type (Choices: yolo_nas_s
, yolo_nas_m
, yolo_nas_l
)
-w
, --weight
: path to pre-trained model weight (ckpt_best.pth
)
--gpus
: Train on multiple gpus
--cpu
: Train on CPU
Other Training Parameters:
--warmup_mode
: Warmup Mode, eg: Linear Epoch Step
--warmup_initial_lr
: Warmup Initial LR
--lr_warmup_epochs
: LR Warmup Epochs
--initial_lr
: Inital LR
--lr_mode
: LR Mode, eg: cosine
--cosine_final_lr_ratio
: Cosine Final LR Ratio
--optimizer
: Optimizer, eg: Adam
--weight_decay
: Weight Decay
Example:
python3 qat.py --data /dir/dataset/data.yaml --weight runs/train2/ckpt_best.pth \
--batch 6 --epoch 100 --model yolo_nas_m --size 640