Skip to content

Java implementation of the Louvain method of community detection in graphs

License

Notifications You must be signed in to change notification settings

neil-justice/louvain

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Louvain

Java implementation of the Louvain method for community detection.

Input: weighted, undirected graph, defined in a CSV file as a list of edges. See the graphs at src/test/resources for examples. Nodes may be named or indexed, and the indexes do not have to start at zero or be continuous.

Features

  • Read graphs from files, build manually, or generate random Erdős–Rényi graphs.
  • Detect communities using the Louvain method and calculate the modularity of the resulting clustering.
  • Read infomap output files.
  • Compare different clusterings of a graph using Normalised Mutual Information (NMI).
  • Assign nodes to random communities (for baseline comparisons of a clustering).
  • Read and write community structures to disk.

Examples

Load a graph file and detect communities using the Louvain method, and print the modularity of the detected communities:

    final Graph g = new GraphBuilder().fromFile("src/test/resources/graphs/arxiv.txt", true);
    final LouvainDetector ld = new LouvainDetector(g);
    final LayeredCommunityStructure cs = ld.cluster();
    System.out.println(ld.modularity());

Load a graph file and detect communities using the Louvain method, then compare each layer with each layer from a loaded infomap file:

    final Graph g = new GraphBuilder().fromFile("src/test/resources/graphs/arxiv.txt", true);
    final LouvainDetector ld = new LouvainDetector(g);
    final LayeredCommunityStructure cs = ld.cluster();

    final InfomapResultsReader irr = new InfomapResultsReader("graphs/infomap.tree");
    final LayeredCommunityStructure cs2 = irr.cluster();

     for (int i = 0; i < cs.layers(); i++) {
       for (int j = 0; j < cs2.layers(); j++) {
         System.out.printf("%.03f ", NMI.NMI(cs.layer(i), cs2.layer(j)));
       }
       System.out.println();
     }

Generate an Erdős–Rényi graph, detect communities using the Louvain method, and compare the NMI of those communities to randomly-assigned communities of the same size:

    final Graph g = new GraphBuilder().erdosRenyi(1000, 0.1);
    final LouvainDetector ld = new LouvainDetector(g);
    final LayeredCommunityStructure cs = ld.cluster();

    RandomCommunityAssigner rca = new RandomCommunityAssigner(cs);
    final LayeredCommunityStructure cs2 = rca.cluster();

     for (int i = 0; i < cs.layers(); i++) {
       for (int j = 0; j < cs2.layers(); j++) {
         System.out.printf("%.03f ", NMI.NMI(cs.layer(i), cs2.layer(j)));
       }
       System.out.println();
     }

Run the Louvain community detection 10 times, and write the clustering with the best modularity to a file:

    final Graph g = new GraphBuilder().erdosRenyi(1000, 0.1);
    final LouvainSelector ls = new LouvainSelector("src/test/resources/graphs/arxiv.txt", "out.csv");
    final LayeredCommunityStructure cs = ls.cluster(10);

Licensing

License: MIT

Dependency License
log4j2 Apache 2.0
trove4j LGPL
junit Eclipse 1.0

About

Java implementation of the Louvain method of community detection in graphs

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages