Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

'int' object has no attribute 'item' on conv shapes calculation (issue 96) #101

Merged
merged 5 commits into from
Jun 1, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions .github/workflows/build.yml
Original file line number Diff line number Diff line change
Expand Up @@ -28,9 +28,9 @@ jobs:
- name: Lint with ruff
run: |
# stop the build if there are Python syntax errors or undefined names
ruff --output-format=github --select=E9,F63,F7,F82 --target-version=py37 .
ruff check . --output-format=github --select=E9,F63,F7,F82 --target-version=py37
# default set of ruff rules with GitHub Annotations
ruff --output-format=github --target-version=py37 --exclude=docs/ --exclude=paper/ .
ruff check . --output-format=github --target-version=py37 --exclude=docs/ --exclude=paper/
- name: Test with pytest
run: |
pytest
15 changes: 9 additions & 6 deletions nir/ir/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ def calculate_conv_output(
shapes = []
for i in range(ndim):
if isinstance(padding, str) and padding == "same":
shape = input_shape[i]
shape = _index_tuple(input_shape, i)
else:
shape = np.floor(
(
Expand Down Expand Up @@ -87,19 +87,22 @@ def calc_flatten_output(input_shape: Sequence[int], start_dim: int, end_dim: int
)


def _index_tuple(
tuple: Union[int, Sequence[int]], index: int
) -> Union[int, np.ndarray]:
def _index_tuple(tuple: Union[int, Sequence[int]], index: int) -> np.ndarray:
"""If the input is a tuple/array, index it.

Otherwise, return it as-is.
"""
if isinstance(tuple, np.ndarray) or isinstance(tuple, Sequence):
if isinstance(tuple, np.ndarray):
return tuple[index]
elif isinstance(tuple, Sequence):
return np.array(tuple[index])
elif isinstance(tuple, (int, np.integer)):
return np.array([tuple])
else:
raise TypeError(f"tuple must be int or np.ndarray, not {type(tuple)}")
try:
return tuple[index]
except TypeError:
raise TypeError(f"tuple must be int or np.ndarray, not {type(tuple)}")


def ensure_str(a: Union[str, bytes]) -> str:
Expand Down
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -47,5 +47,5 @@ find={include = ["nir*"]}

[tool.ruff]
line-length = 100
per-file-ignores = {"docs/conf.py" = ["E402"]}
lint.per-file-ignores = {"docs/conf.py" = ["E402"]}
exclude = ["paper/"]
22 changes: 22 additions & 0 deletions tests/test_ir.py
Original file line number Diff line number Diff line change
Expand Up @@ -134,6 +134,28 @@ def test_conv2d():
assert np.allclose(a.output_type["output"], np.array([3, 100, 50]))


def test_conv2d_same():
# Create a NIR Network
conv_weights = np.array([[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]])
li_tau = np.array([0.9, 0.8])
li_r = np.array([1.0, 1.0])
li_v_leak = np.array([0.0, 0.0])

nir_network = nir.NIRGraph.from_list(
nir.Conv2d(
input_shape=(3, 3),
weight=conv_weights,
stride=1,
padding="same",
dilation=1,
groups=1,
bias=np.array([0.0] * 9),
),
nir.LI(li_tau, li_r, li_v_leak),
)
assert np.allclose(nir_network.nodes["conv2d"].output_type["output"], [1, 3, 3])


def test_cuba_lif():
a = np.random.randn(10, 10)
lif = nir.CubaLIF(tau_mem=a, tau_syn=a, r=a, v_leak=a, v_threshold=a)
Expand Down
24 changes: 24 additions & 0 deletions tests/test_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
import numpy as np
import pytest

from nir.ir.utils import _index_tuple

import importlib

_TORCH_SPEC = importlib.util.find_spec("torch") is not None


def test_index_tuple():
assert _index_tuple(1, 0) == 1
assert _index_tuple([1, 2], 0) == 1
assert _index_tuple(np.array([1, 2]), 0) == 1
assert np.all(
np.equal(_index_tuple(np.array([[1, 2], [3, 4]]), 1), np.array([3, 4]))
)


@pytest.mark.skipif(_TORCH_SPEC is not None, reason="requires torch")
def test_index_tuple_torch():
torch = _TORCH_SPEC.loader.load_module()
assert _index_tuple(torch.tensor([1, 2]), 0) == 1
assert _index_tuple(torch.tensor([[1, 2], [3, 4]]), 1).equal(torch.tensor([3, 4]))
Loading