-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathoptuna_analysis.py
47 lines (39 loc) · 1.23 KB
/
optuna_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import optuna
from optuna.visualization import (
plot_optimization_history,
plot_intermediate_values,
plot_param_importances,
plot_slice,
)
if __name__ == "__main__":
model = "SVM"
dataset = "vulpi"
name = f"{model}_{dataset}"
storage_name = f"sqlite:///results/{dataset}/optuna/{name}.db"
print(f"Loading study {name} from {storage_name}")
sampler = optuna.samplers.RandomSampler(seed=420)
study = optuna.create_study(
direction="minimize",
sampler=sampler,
study_name=name,
storage=storage_name,
load_if_exists=True,
)
print(f"There was {len(study.trials)} trials completed")
print("Best trial:")
trial = study.best_trial
print(" Value: {}".format(trial.value))
print(" Params: ")
for key, value in trial.params.items():
print(" {}: {}".format(key, value))
plot_optimization_history(study).show()
plot_intermediate_values(study).show()
fig = plot_param_importances(study)
fig.layout.title = name
fig.show()
fig = plot_slice(study)
fig.layout.title = name
fig.show()
study_df = study.trials_dataframe()
study_df = study_df[(study_df["value"] > 0.99)]
print(study_df.to_dict())