Skip to content

Commit

Permalink
FaqGen param fix (#1277)
Browse files Browse the repository at this point in the history
Signed-off-by: Xinyao Wang <[email protected]>
  • Loading branch information
XinyaoWa authored Dec 20, 2024
1 parent fd706d1 commit 05365b6
Show file tree
Hide file tree
Showing 4 changed files with 6 additions and 6 deletions.
2 changes: 1 addition & 1 deletion FaqGen/docker_compose/intel/cpu/xeon/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -119,7 +119,7 @@ docker compose up -d
-H "Content-Type: multipart/form-data" \
-F "messages=Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5." \
-F "max_tokens=32" \
-F "stream=false"
-F "stream=False"
```

Following the validation of all aforementioned microservices, we are now prepared to construct a mega-service.
Expand Down
2 changes: 1 addition & 1 deletion FaqGen/docker_compose/intel/hpu/gaudi/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -120,7 +120,7 @@ docker compose up -d
-H "Content-Type: multipart/form-data" \
-F "messages=Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5." \
-F "max_tokens=32" \
-F "stream=false"
-F "stream=False"
```

## 🚀 Launch the UI
Expand Down
4 changes: 2 additions & 2 deletions FaqGen/tests/test_compose_on_gaudi.sh
Original file line number Diff line number Diff line change
Expand Up @@ -107,11 +107,11 @@ function validate_megaservice() {
local EXPECTED_RESULT="Embeddings"
local INPUT_DATA="messages=Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."
local URL="${ip_address}:8888/v1/faqgen"
local HTTP_STATUS=$(curl -s -o /dev/null -w "%{http_code}" -X POST -F "$INPUT_DATA" -H 'Content-Type: multipart/form-data' "$URL")
local HTTP_STATUS=$(curl -s -o /dev/null -w "%{http_code}" -X POST -F "$INPUT_DATA" -F "max_tokens=32" -F "stream=False" -H 'Content-Type: multipart/form-data' "$URL")
if [ "$HTTP_STATUS" -eq 200 ]; then
echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..."

local CONTENT=$(curl -s -X POST -F "$INPUT_DATA" -H 'Content-Type: multipart/form-data' "$URL" | tee ${LOG_PATH}/${SERVICE_NAME}.log)
local CONTENT=$(curl -s -X POST -F "$INPUT_DATA" -F "max_tokens=32" -F "stream=False" -H 'Content-Type: multipart/form-data' "$URL" | tee ${LOG_PATH}/${SERVICE_NAME}.log)

if echo "$CONTENT" | grep -q "$EXPECTED_RESULT"; then
echo "[ $SERVICE_NAME ] Content is as expected."
Expand Down
4 changes: 2 additions & 2 deletions FaqGen/tests/test_compose_on_xeon.sh
Original file line number Diff line number Diff line change
Expand Up @@ -107,11 +107,11 @@ function validate_megaservice() {
local EXPECTED_RESULT="Embeddings"
local INPUT_DATA="messages=Text Embeddings Inference (TEI) is a toolkit for deploying and serving open source text embeddings and sequence classification models. TEI enables high-performance extraction for the most popular models, including FlagEmbedding, Ember, GTE and E5."
local URL="${ip_address}:8888/v1/faqgen"
local HTTP_STATUS=$(curl -s -o /dev/null -w "%{http_code}" -X POST -F "$INPUT_DATA" -H 'Content-Type: multipart/form-data' "$URL")
local HTTP_STATUS=$(curl -s -o /dev/null -w "%{http_code}" -X POST -F "$INPUT_DATA" -F "max_tokens=32" -F "stream=False" -H 'Content-Type: multipart/form-data' "$URL")
if [ "$HTTP_STATUS" -eq 200 ]; then
echo "[ $SERVICE_NAME ] HTTP status is 200. Checking content..."

local CONTENT=$(curl -s -X POST -F "$INPUT_DATA" -H 'Content-Type: multipart/form-data' "$URL" | tee ${LOG_PATH}/${SERVICE_NAME}.log)
local CONTENT=$(curl -s -X POST -F "$INPUT_DATA" -F "max_tokens=32" -F "stream=False" -H 'Content-Type: multipart/form-data' "$URL" | tee ${LOG_PATH}/${SERVICE_NAME}.log)

if echo "$CONTENT" | grep -q "$EXPECTED_RESULT"; then
echo "[ $SERVICE_NAME ] Content is as expected."
Expand Down

0 comments on commit 05365b6

Please sign in to comment.