Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding tutorial #55

Merged
merged 1 commit into from
Jan 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file.
126 changes: 126 additions & 0 deletions sequence_analysis/tutorials/Code/amlseq2R.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,126 @@
# Read .seq file and transform to an R file.
import os

def Setup(chdir=False, virtual=True):
"""
Default setup and paths to data
"""

print(os.getcwd())

if not(virtual):
home_dir = "D:\\"
else:
home_dir = "/media/sf_transfert"
base_path = os.path.join(home_dir, "devlp_shared", "AppleCultivarsTreatments")
data_path = base_path + os.sep + "Data"

if chdir:
os.chdir(base_path)

output_file = base_path + os.sep + "Data" + os.sep + "multiseq_N_APPLE_R.csv"

return base_path, data_path, output_file

def ReadSequence(data_path="", data_file="multiseq_N_APPLE_unix.seq"):
"""
Read sequence from file and return Sequences object + python list
"""
if data_path == "":
base_path, data_path, output_file = Setup(chdir=False)

# Python sequence
from openalea.sequence_analysis import sequences
pyseq1 = sequences.Sequences(data_path + os.sep + data_file)
pylist = []
dim_seq = len(pyseq1[0][0])

for i in range(len(pyseq1)):
seq_i = []
for l in range(len(pyseq1[i])):
seq_i += [[pyseq1[i][l][d] for d in range(dim_seq)]]
pylist += [seq_i]

return pyseq1, pylist

def DefaultHeader():
"""
Return default header for .csv
"""
h = "######################################################################### \n"
h += "# \n"
h += "# N-APPLE shoot \n"
h += "# \n"
h += "# VARIABLE 1: treatment code (1: control, 2: treatment with 20 g N/tree dose, 3: treatment with 30 g N/h tree dose), \n"
h += "# VARIABLE 2: cultivar (1: Rubinola, 2: Topaz, 3: Golden Delicious), \n"
h += "# VARIABLE 3: axillary shoot type (0: no shoot, 1: short shoot, 2: medium shoot, 3: long shoot, 4: sylleptic shoot), \n"
h += "# VARIABLE 4: lateral flowering (0: no lateral flowering, 1: LF in median zone, 2: LF in distal zone, 3: LF in median and distal zone = Long LF zone), \n"
h += "# VARIABLE 5: terminal flowering (0: no flower cluster, 1: presence of a flower cluster). \n"
h += "# \n"
h += "# Data : Martin Meszaros, Evelyne Costes, Jean-Baptiste Durand \n"
h += "# \n"
h += '# read with read.csv(multiseq_N_APPLE_R.csv, header=TRUE, row.names=1, comment.char="#") \n'
h += "# \n"
h += "######################################################################### \n"
h += '"", treatment code, '
h += "cultivar, "
h += "axillary shoot type, "
h += "lateral flowering, "
h += "terminal flowering, "
h += "sequence N. \n"
return h

def RestoredStatesHeader():
"""
Return header for restored states
"""
h = "######################################################################### \n"
h += "# \n"
h += "# N-APPLE shoot \n"
h += "# \n"
h += "# VARIABLE 1: restored state. \n"
h += "# VARIABLE 2: axillary shoot type (0: no shoot, 1: short shoot, 2: medium shoot, 3: long shoot, 4: sylleptic shoot), \n"
h += "# VARIABLE 3: lateral flowering (0: no lateral flowering, 1: LF in median zone, 2: LF in distal zone, 3: LF in median and distal zone = Long LF zone), \n"
h += "# VARIABLE 4: terminal flowering (0: no flower cluster, 1: presence of a flower cluster). \n"
h += "# \n"
h += "# Data : Martin Meszaros, Evelyne Costes, Jean-Baptiste Durand \n"
h += "# \n"
h += '# read with read.csv(multiseq_N_APPLE_R.csv, header=TRUE, row.names=1, comment.char="#") \n'
h += "# \n"
h += "######################################################################### \n"
h += '"", restored state, '
h += "axillary shoot type, "
h += "lateral flowering, "
h += "terminal flowering, "
h += "sequence N. \n"
return h

def WriteRSequence(pyseq1, output_file="", header=None):
"""
Write sequence in a .txt file, one line per sequence index
"""
if output_file == "":
base_path, data_path, output_file = Setup(chdir=False)

f = open(output_file, "w")

if header is None:
h = DefaultHeader()
else:
h = str(header)
f.write(h)
dim_seq = len(pyseq1[0][0])
l = 1 # line
for i in range(len(pyseq1)):
# i: sequence
for p in range(len(pyseq1[i])):
# p: position
f.write('"' + str(l) + '", ')
for v in range(dim_seq):
# write variables
f.write(str(pyseq1[i][p][v]) + ", ")
# write sequence id
f.write(str(i) + "\n")
l += 1

f.close()
65 changes: 65 additions & 0 deletions sequence_analysis/tutorials/Code/matrix_plot.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
# Plot transition matrices
# Use with conda environment bnp-mrf

import matplotlib.pyplot as plt
import networkx, os
import numpy as np

import os
import numpy as np

print(os.getcwd())

virtual = True
nb_states = 5

if not(virtual):
home_dir = "D:\\"
else:
home_dir = "/mnt/transfert"
base_path = os.path.join(home_dir, "devlp_shared", "AppleCultivarsTreatments")
data_path = base_path + os.sep + "Data"
os.chdir(base_path)


matrix_file = base_path + os.sep + "Models" + os.sep + "seq1v_" + \
str(nb_states) + "s_L.mat"

TM = np.fromfile(matrix_file)
TM = TM.reshape(nb_states, nb_states)

G = networkx.from_numpy_matrix(TM, create_using=networkx.DiGraph)
blues = cm = plt.get_cmap('Blues')

f = plt.figure(1, figsize=(9, 9))
ax = f.add_subplot(1,1,1)

#networkx.draw_circular(G, node_size=150, node_color='#1f78b4',
#with_labels=True, arrows=True,
#arrow_size=140,
#width=4,
#edge_cmap = plt.cm.Blues)

# G = networkx.star_graph(81)
initial_nodes = np.array(list(G.nodes()))
final_nodes = initial_nodes + 1

networkx.relabel_nodes(G, dict(zip(initial_nodes, final_nodes)), copy=False)

colors = [G.get_edge_data(a, b)['weight'] for (a,b) in G.edges()]

# networkx.draw_circular(G, edge_color = range(81), edge_cmap = plt.cm.Blues)

options = {
"node_color": "#A0CBE2",
"edge_color": colors,
"width": 3,
"edge_cmap": plt.cm.Blues,
"with_labels": True,
"node_size": 150,
"with_labels": True,
}


networkx.draw_circular(G, **options)
plt.show()
123 changes: 123 additions & 0 deletions sequence_analysis/tutorials/Code/python_dics2R.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,123 @@
# Export python dictionaries of sufficients HMSC statistics for
# GLMMs to an R file.

import os


def ComputeGLMStatistics(pyseq1, seg_pyseq):
"""
Compute statistics for GLM(M) estimation
"""
dwell = {} # indexed by state, cultivar, tree
transition = {} # indexed by past_state, treatment, cultivar, tree
observation = {} # indexed by state, treatment, cultivar, tree
for i in range(len(pyseq1)):
d = 0
s_past = -1 # past state

for l in range(len(pyseq1[i])):
va = pyseq1[i][l]
t = va[0] # treatment
c = va[1] # cultivar
v = seg_pyseq[i][l]
s = v[0]
if s != s_past:
if s_past != -1:
if dwell.has_key((s_past, t, c, i+1)):
dwell[s_past, t, c, i+1] += [[d, 1]]
transition[s_past, t, c, i+1] += [s]
else:
dwell[s_past, t, c, i+1] = [[d, 1]]
transition[s_past, t, c, i+1] = [s]
d = 1 # dwell time
else:
d += 1
s_past = s
if observation.has_key((s, t, c, i+1)):
observation[s, t, c, i+1] += [v[1:]]
else:
observation[s, t, c, i+1] = [v[1:]]
if dwell.has_key((s_past, t, c, i+1)):
dwell[s_past, t, c, i+1] += [[d, 0]]
else:
dwell[s_past, t, c, i+1] = [[d, 0]]

return dwell, transition, observation

def GLMStatisticsHeader():

"""
Return header for GLM statistics
"""
h = "######################################################################### \n"
h += "# \n"
h += "# Statistics for GLM(M) estimation issued from HSMC restoration\n"
h += "# \n"
h += '# VARIABLE 1: type of statistics ("d"well time, "t"ransition, "o"bservation). \n'
h += '# VARIABLE 2: restored state (current state for "d" and "o", previous state for "t"). \n'
h += "# VARIABLE 3: treatment. \n"
h += "# VARIABLE 4: cultivar. \n"
h += "# VARIABLE 5: value of statistics. \n"
h += '# VARIABLE 6: for "d", 0 if last dwell time (censored), 1 otherwise; for "t", NA \n'
h += '# for "o", id of variable. \n'
h += "# \n"
h += '# read with read.csv(file_name.csv, header=TRUE, row.names=1, comment.char="#") \n'
h += "# \n"
h += "######################################################################### \n"
h += '"", type, '
h += "restored state, "
h += "treatment, "
h += "cultivar, "
h += "sequence N., "
h += "value, "
h += "info \n"
return h


def WriteGLMStatistics(dwell, transition, observation, output_file):
"""
Write statistics for GLM(M) estimation
"""
f = open(output_file, "w")
f.write(GLMStatisticsHeader())
l = 1 # line
for (k, v) in dwell.items():
f.write(str(l) + ", ")
f.write("d, ")
for o in k:
f.write(str(o) + ", ")
s = ""
for o in v:
for i in o:
s += str(i) + ", "
s = s[0:-2] + "\n"
l += 1
f.write(s)

for (k, v) in transition.items():
f.write(str(l) + ", ")
f.write("t, ")
for o in k:
f.write(str(o) + ", ")
s = ""
for o in v:
s += str(o) + ", "
s = s[0:-2] + ", NA \n"
l += 1
f.write(s)

for (k, v) in observation.items():
# common part of all elements in current
# list of objects and associated string
s_base = "o, "
for o in k:
s_base += str(o) + ", "
for o in v:
for i in range(len(o)):
# Variables
s = s_base + str(o[i]) + ", " + str(i+1) + "\n"
f.write(str(l) + ", " + s)
l += 1

f.close()

2 changes: 2 additions & 0 deletions sequence_analysis/tutorials/Utils/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
from unix2dos import unix2dos
from dos2unix import dos2unix
39 changes: 39 additions & 0 deletions sequence_analysis/tutorials/Utils/dos2unix.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
#!/usr/bin/env python
"""\
convert dos linefeeds (crlf) to unix (lf)
usage: dos2unix.py <input> <output>
"""

"""
__version__ = "1" # version is needed for packaging

import sys

if len(sys.argv[1:]) != 2:
sys.exit(__doc__)

content = ''
outsize = 0
with open(sys.argv[1], 'rb') as infile:
content = infile.read()
with open(sys.argv[2], 'wb') as output:
for line in content.splitlines():
outsize += len(line) + 1
output.write(line + b'\n')

print("Done. Stripped %s bytes." % (len(content)-outsize))
"""

def dos2unix(infile, output):
import sys

content = ''
outsize = 0
ifile = open(infile)
content = ifile.read()
ofile = open(output, 'wb')
for line in content.splitlines():
outsize += len(line) + 1
ofile.write(line + b'\n')

print("Done. Stripped %s bytes." % (len(content)-outsize))
Loading
Loading