Skip to content

Commit

Permalink
🚀 Anomalib Pipelines (#2060)
Browse files Browse the repository at this point in the history
* 🚀 Anomalib Pipelines  (#2005)

* Add initial design

Signed-off-by: Ashwin Vaidya <[email protected]>

* Refactor + add to CLI

Signed-off-by: Ashwin Vaidya <[email protected]>

* Support grid search on class path

Signed-off-by: Ashwin Vaidya <[email protected]>

* redirect outputs

Signed-off-by: Ashwin Vaidya <[email protected]>

* design v2

Signed-off-by: Ashwin Vaidya <[email protected]>

* remove commented code

Signed-off-by: Ashwin Vaidya <[email protected]>

* add dummy experiment

Signed-off-by: Ashwin Vaidya <[email protected]>

* add config

Signed-off-by: Ashwin Vaidya <[email protected]>

* Refactor

Signed-off-by: Ashwin Vaidya <[email protected]>

* Add tests

Signed-off-by: Ashwin Vaidya <[email protected]>

* Apply suggestions from code review

Co-authored-by: Samet Akcay <[email protected]>

* address pr comments

Signed-off-by: Ashwin Vaidya <[email protected]>

* Apply suggestions from code review

Co-authored-by: Samet Akcay <[email protected]>

* refactor

Signed-off-by: Ashwin Vaidya <[email protected]>

* Simplify argparse

Signed-off-by: Ashwin Vaidya <[email protected]>

* modify logger redirect

Signed-off-by: Ashwin Vaidya <[email protected]>

* update docstrings

Signed-off-by: Ashwin Vaidya <[email protected]>

---------

Signed-off-by: Ashwin Vaidya <[email protected]>
Co-authored-by: Samet Akcay <[email protected]>

* 🐞 Fix Rich Progress with Patchcore Training (#2062)

Add safe track

Signed-off-by: Ashwin Vaidya <[email protected]>

* [Pipelines] 🔨 Intra-stage result passing (#2061)

* Add initial design

Signed-off-by: Ashwin Vaidya <[email protected]>

* Refactor + add to CLI

Signed-off-by: Ashwin Vaidya <[email protected]>

* Support grid search on class path

Signed-off-by: Ashwin Vaidya <[email protected]>

* redirect outputs

Signed-off-by: Ashwin Vaidya <[email protected]>

* design v2

Signed-off-by: Ashwin Vaidya <[email protected]>

* remove commented code

Signed-off-by: Ashwin Vaidya <[email protected]>

* add dummy experiment

Signed-off-by: Ashwin Vaidya <[email protected]>

* add config

Signed-off-by: Ashwin Vaidya <[email protected]>

* Refactor

Signed-off-by: Ashwin Vaidya <[email protected]>

* Add tests

Signed-off-by: Ashwin Vaidya <[email protected]>

* Apply suggestions from code review

Co-authored-by: Samet Akcay <[email protected]>

* address pr comments

Signed-off-by: Ashwin Vaidya <[email protected]>

* Apply suggestions from code review

Co-authored-by: Samet Akcay <[email protected]>

* refactor

Signed-off-by: Ashwin Vaidya <[email protected]>

* Simplify argparse

Signed-off-by: Ashwin Vaidya <[email protected]>

* modify logger redirect

Signed-off-by: Ashwin Vaidya <[email protected]>

* update docstrings

Signed-off-by: Ashwin Vaidya <[email protected]>

* Add proposal

Signed-off-by: Ashwin Vaidya <[email protected]>

---------

Signed-off-by: Ashwin Vaidya <[email protected]>
Co-authored-by: Samet Akcay <[email protected]>

* Update src/anomalib/pipelines/benchmark/job.py

---------

Signed-off-by: Ashwin Vaidya <[email protected]>
Co-authored-by: Samet Akcay <[email protected]>
  • Loading branch information
ashwinvaidya17 and samet-akcay authored May 24, 2024
1 parent 5ca1612 commit a4c5a2b
Show file tree
Hide file tree
Showing 36 changed files with 1,068 additions and 20 deletions.
10 changes: 10 additions & 0 deletions src/anomalib/cli/cli.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
from rich import traceback

from anomalib import TaskType, __version__
from anomalib.cli.pipelines import PIPELINE_REGISTRY, pipeline_subcommands, run_pipeline
from anomalib.cli.utils.help_formatter import CustomHelpFormatter, get_short_docstring
from anomalib.cli.utils.openvino import add_openvino_export_arguments
from anomalib.loggers import configure_logger
Expand Down Expand Up @@ -131,6 +132,13 @@ def add_subcommands(self, **kwargs) -> None:
# add arguments to subcommand
getattr(self, f"add_{subcommand}_arguments")(sub_parser)

# Add pipeline subcommands
if PIPELINE_REGISTRY is not None:
for subcommand, value in pipeline_subcommands().items():
sub_parser = PIPELINE_REGISTRY[subcommand].get_parser()
self.subcommand_parsers[subcommand] = sub_parser
parser_subcommands.add_subcommand(subcommand, sub_parser, help=value["description"])

def add_arguments_to_parser(self, parser: ArgumentParser) -> None:
"""Extend trainer's arguments to add engine arguments.
Expand Down Expand Up @@ -355,6 +363,8 @@ def _run_subcommand(self) -> None:
fn = getattr(self.engine, self.subcommand)
fn_kwargs = self._prepare_subcommand_kwargs(self.subcommand)
fn(**fn_kwargs)
elif PIPELINE_REGISTRY is not None and self.subcommand in pipeline_subcommands():
run_pipeline(self.config)
else:
self.config_init = self.parser.instantiate_classes(self.config)
getattr(self, f"{self.subcommand}")()
Expand Down
41 changes: 41 additions & 0 deletions src/anomalib/cli/pipelines.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
"""Subcommand for pipelines."""

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0


import logging

from jsonargparse import Namespace

from anomalib.cli.utils.help_formatter import get_short_docstring
from anomalib.utils.exceptions import try_import

logger = logging.getLogger(__name__)

if try_import("anomalib.pipelines"):
from anomalib.pipelines import Benchmark
from anomalib.pipelines.components.base import Pipeline

PIPELINE_REGISTRY: dict[str, type[Pipeline]] | None = {"benchmark": Benchmark}
else:
PIPELINE_REGISTRY = None


def pipeline_subcommands() -> dict[str, dict[str, str]]:
"""Return subcommands for pipelines."""
if PIPELINE_REGISTRY is not None:
return {name: {"description": get_short_docstring(pipeline)} for name, pipeline in PIPELINE_REGISTRY.items()}
return {}


def run_pipeline(args: Namespace) -> None:
"""Run pipeline."""
logger.warning("This feature is experimental. It may change or be removed in the future.")
if PIPELINE_REGISTRY is not None:
subcommand = args.subcommand
config = args[subcommand]
PIPELINE_REGISTRY[subcommand]().run(config)
else:
msg = "Pipeline is not available"
raise ValueError(msg)
5 changes: 2 additions & 3 deletions src/anomalib/cli/utils/help_formatter.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@
import argparse
import re
import sys
from typing import TypeVar

import docstring_parser
from jsonargparse import DefaultHelpFormatter
Expand Down Expand Up @@ -38,11 +37,11 @@
print("To use other subcommand using `anomalib install`")


def get_short_docstring(component: TypeVar) -> str:
def get_short_docstring(component: type) -> str:
"""Get the short description from the docstring.
Args:
component (TypeVar): The component to get the docstring from
component (type): The component to get the docstring from
Returns:
str: The short description
Expand Down
26 changes: 20 additions & 6 deletions src/anomalib/data/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,6 @@
# Copyright (C) 2022-2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0


import importlib
import logging
from enum import Enum
Expand All @@ -29,20 +28,35 @@
)


def get_datamodule(config: DictConfig | ListConfig) -> AnomalibDataModule:
class UnknownDatamoduleError(ModuleNotFoundError):
...


def get_datamodule(config: DictConfig | ListConfig | dict) -> AnomalibDataModule:
"""Get Anomaly Datamodule.
Args:
config (DictConfig | ListConfig): Configuration of the anomaly model.
config (DictConfig | ListConfig | dict): Configuration of the anomaly model.
Returns:
PyTorch Lightning DataModule
"""
logger.info("Loading the datamodule")

module = importlib.import_module(".".join(config.data.class_path.split(".")[:-1]))
dataclass = getattr(module, config.data.class_path.split(".")[-1])
init_args = {**config.data.get("init_args", {})} # get dict
if isinstance(config, dict):
config = DictConfig(config)

try:
_config = config.data if "data" in config else config
if len(_config.class_path.split(".")) > 1:
module = importlib.import_module(".".join(_config.class_path.split(".")[:-1]))
else:
module = importlib.import_module("anomalib.data")
except ModuleNotFoundError as exception:
logger.exception(f"ModuleNotFoundError: {_config.class_path}")
raise UnknownDatamoduleError from exception
dataclass = getattr(module, _config.class_path.split(".")[-1])
init_args = {**_config.get("init_args", {})} # get dict
if "image_size" in init_args:
init_args["image_size"] = to_tuple(init_args["image_size"])

Expand Down
4 changes: 2 additions & 2 deletions src/anomalib/engine/engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
from typing import Any

import torch
from lightning.pytorch.callbacks import Callback
from lightning.pytorch.callbacks import Callback, RichModelSummary, RichProgressBar
from lightning.pytorch.loggers import Logger
from lightning.pytorch.trainer import Trainer
from lightning.pytorch.utilities.types import _EVALUATE_OUTPUT, _PREDICT_OUTPUT, EVAL_DATALOADERS, TRAIN_DATALOADERS
Expand Down Expand Up @@ -406,7 +406,7 @@ def _setup_transform(

def _setup_anomalib_callbacks(self) -> None:
"""Set up callbacks for the trainer."""
_callbacks: list[Callback] = []
_callbacks: list[Callback] = [RichProgressBar(), RichModelSummary()]

# Add ModelCheckpoint if it is not in the callbacks list.
has_checkpoint_callback = any(isinstance(c, ModelCheckpoint) for c in self._cache.args["callbacks"])
Expand Down
4 changes: 0 additions & 4 deletions src/anomalib/loggers/mlflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,12 +7,8 @@
from lightning.pytorch.utilities import rank_zero_only
from matplotlib.figure import Figure

from anomalib.utils.exceptions.imports import try_import

from .base import ImageLoggerBase

try_import("mlflow")


class AnomalibMLFlowLogger(ImageLoggerBase, MLFlowLogger):
"""Logger for MLFlow.
Expand Down
1 change: 0 additions & 1 deletion src/anomalib/metrics/f1_score.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,6 @@
# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0


import logging
from typing import Any, Literal

Expand Down
4 changes: 2 additions & 2 deletions src/anomalib/models/components/sampling/k_center_greedy.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,10 +8,10 @@
# SPDX-License-Identifier: Apache-2.0

import torch
from rich.progress import track
from torch.nn import functional as F # noqa: N812

from anomalib.models.components.dimensionality_reduction import SparseRandomProjection
from anomalib.utils.rich import safe_track


class KCenterGreedy:
Expand Down Expand Up @@ -98,7 +98,7 @@ def select_coreset_idxs(self, selected_idxs: list[int] | None = None) -> list[in

selected_coreset_idxs: list[int] = []
idx = int(torch.randint(high=self.n_observations, size=(1,)).item())
for _ in track(range(self.coreset_size), description="Selecting Coreset Indices."):
for _ in safe_track(sequence=range(self.coreset_size), description="Selecting Coreset Indices."):
self.update_distances(cluster_centers=[idx])
idx = self.get_new_idx()
if idx in selected_idxs:
Expand Down
8 changes: 8 additions & 0 deletions src/anomalib/pipelines/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
"""Pipelines for end-to-end usecases."""

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

from .benchmark import Benchmark

__all__ = ["Benchmark"]
8 changes: 8 additions & 0 deletions src/anomalib/pipelines/benchmark/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
"""Benchmarking."""

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

from .pipeline import Benchmark

__all__ = ["Benchmark"]
47 changes: 47 additions & 0 deletions src/anomalib/pipelines/benchmark/generator.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
"""Benchmark job generator."""

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

from collections.abc import Generator

from anomalib.data import get_datamodule
from anomalib.models import get_model
from anomalib.pipelines.components import JobGenerator
from anomalib.pipelines.components.utils import get_iterator_from_grid_dict
from anomalib.pipelines.types import PREV_STAGE_RESULT
from anomalib.utils.logging import hide_output

from .job import BenchmarkJob


class BenchmarkJobGenerator(JobGenerator):
"""Generate BenchmarkJob.
Args:
accelerator (str): The accelerator to use.
"""

def __init__(self, accelerator: str) -> None:
self.accelerator = accelerator

@property
def job_class(self) -> type:
"""Return the job class."""
return BenchmarkJob

@hide_output
def generate_jobs(
self,
args: dict,
previous_stage_result: PREV_STAGE_RESULT,
) -> Generator[BenchmarkJob, None, None]:
"""Return iterator based on the arguments."""
del previous_stage_result # Not needed for this job
for _container in get_iterator_from_grid_dict(args):
yield BenchmarkJob(
accelerator=self.accelerator,
seed=_container["seed"],
model=get_model(_container["model"]),
datamodule=get_datamodule(_container["data"]),
)
108 changes: 108 additions & 0 deletions src/anomalib/pipelines/benchmark/job.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
"""Benchmarking job."""

# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import logging
from datetime import datetime
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import Any

import pandas as pd
from lightning import seed_everything
from rich.console import Console
from rich.table import Table

from anomalib.data import AnomalibDataModule
from anomalib.engine import Engine
from anomalib.models import AnomalyModule
from anomalib.pipelines.components import Job
from anomalib.utils.logging import hide_output

logger = logging.getLogger(__name__)


class BenchmarkJob(Job):
"""Benchmarking job.
Args:
accelerator (str): The accelerator to use.
model (AnomalyModule): The model to use.
datamodule (AnomalibDataModule): The data module to use.
seed (int): The seed to use.
"""

name = "benchmark"

def __init__(self, accelerator: str, model: AnomalyModule, datamodule: AnomalibDataModule, seed: int) -> None:
super().__init__()
self.accelerator = accelerator
self.model = model
self.datamodule = datamodule
self.seed = seed

@hide_output
def run(
self,
task_id: int | None = None,
) -> dict[str, Any]:
"""Run the benchmark."""
devices: str | list[int] = "auto"
if task_id is not None:
devices = [task_id]
logger.info(f"Running job {self.model.__class__.__name__} with device {task_id}")
with TemporaryDirectory() as temp_dir:
seed_everything(self.seed)
engine = Engine(
accelerator=self.accelerator,
devices=devices,
default_root_dir=temp_dir,
)
engine.fit(self.model, self.datamodule)
test_results = engine.test(self.model, self.datamodule)
# TODO(ashwinvaidya17): Restore throughput
# https://github.com/openvinotoolkit/anomalib/issues/2054
output = {
"seed": self.seed,
"accelerator": self.accelerator,
"model": self.model.__class__.__name__,
"data": self.datamodule.__class__.__name__,
"category": self.datamodule.category,
**test_results[0],
}
logger.info(f"Completed with result {output}")
return output

@staticmethod
def collect(results: list[dict[str, Any]]) -> pd.DataFrame:
"""Gather the results returned from run."""
output: dict[str, Any] = {}
for key in results[0]:
output[key] = []
for result in results:
for key, value in result.items():
output[key].append(value)
return pd.DataFrame(output)

@staticmethod
def save(result: pd.DataFrame) -> None:
"""Save the result to a csv file."""
BenchmarkJob._print_tabular_results(result)
file_path = Path("runs") / BenchmarkJob.name / datetime.now().strftime("%Y-%m-%d-%H_%M_%S") / "results.csv"
file_path.parent.mkdir(parents=True, exist_ok=True)
result.to_csv(file_path, index=False)
logger.info(f"Saved results to {file_path}")

@staticmethod
def _print_tabular_results(gathered_result: pd.DataFrame) -> None:
"""Print the tabular results."""
if gathered_result is not None:
console = Console()
table = Table(title=f"{BenchmarkJob.name} Results", show_header=True, header_style="bold magenta")
_results = gathered_result.to_dict("list")
for column in _results:
table.add_column(column)
for row in zip(*_results.values(), strict=False):
table.add_row(*[str(value) for value in row])
console.print(table)
Loading

0 comments on commit a4c5a2b

Please sign in to comment.