-
Notifications
You must be signed in to change notification settings - Fork 2.4k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[PT FE] Added aten::logaddexp #28539
base: master
Are you sure you want to change the base?
Changes from all commits
1353975
3b610e1
34b182a
b6cb115
e61befd
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,62 @@ | ||
// Copyright (C) 2018-2025 Intel Corporation | ||
// SPDX-License-Identifier: Apache-2.0 | ||
// | ||
|
||
#include "openvino/frontend/pytorch/node_context.hpp" | ||
#include "openvino/op/add.hpp" | ||
#include "openvino/op/convert.hpp" | ||
#include "openvino/op/convert_like.hpp" | ||
#include "openvino/op/exp.hpp" | ||
#include "openvino/op/log.hpp" | ||
#include "openvino/op/maximum.hpp" | ||
#include "openvino/op/subtract.hpp" | ||
#include "utils.hpp" | ||
|
||
namespace ov { | ||
namespace frontend { | ||
namespace pytorch { | ||
namespace op { | ||
|
||
using namespace ov::op; | ||
|
||
OutputVector translate_logaddexp(const NodeContext& context) { | ||
// "aten::logaddexp(Tensor self, Tensor other) -> Tensor" | ||
num_inputs_check(context, 2, 2); | ||
|
||
auto input1 = context.get_input(0); | ||
auto input2 = context.get_input(1); | ||
|
||
// Convert inputs to floating point type if needed | ||
input1 = context.mark_node(std::make_shared<v0::Convert>(input1, element::f32)); | ||
input2 = context.mark_node(std::make_shared<v0::Convert>(input2, element::f32)); | ||
|
||
// Find maximum of inputs | ||
auto max_val = context.mark_node(std::make_shared<v1::Maximum>(input1, input2)); | ||
|
||
// Calculate x1 - max and x2 - max | ||
auto diff1 = context.mark_node(std::make_shared<v1::Subtract>(input1, max_val)); | ||
auto diff2 = context.mark_node(std::make_shared<v1::Subtract>(input2, max_val)); | ||
|
||
// Calculate exp(x1 - max) and exp(x2 - max) | ||
auto exp1 = context.mark_node(std::make_shared<v0::Exp>(diff1)); | ||
auto exp2 = context.mark_node(std::make_shared<v0::Exp>(diff2)); | ||
|
||
// Add the scaled exponentials | ||
auto sum = context.mark_node(std::make_shared<v1::Add>(exp1, exp2)); | ||
|
||
// Take the log and add back the maximum | ||
auto log_sum = context.mark_node(std::make_shared<v0::Log>(sum)); | ||
auto result = context.mark_node(std::make_shared<v1::Add>(log_sum, max_val)); | ||
|
||
// If the output tensor type is different, convert to match | ||
if (input1.get_element_type() != element::f32) { | ||
result = context.mark_node(std::make_shared<v1::ConvertLike>(result, input1)); | ||
} | ||
|
||
return {result}; | ||
}; | ||
|
||
} // namespace op | ||
} // namespace pytorch | ||
} // namespace frontend | ||
} // namespace ov |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,130 @@ | ||
# Copyright (C) 2018-2023 Intel Corporation | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import pytest | ||
import numpy as np | ||
from pytorch_layer_test_class import PytorchLayerTest | ||
|
||
|
||
class TestLogAddExp(PytorchLayerTest): | ||
def _prepare_input(self, input1, input2, dtype="float32"): | ||
"""Prepare inputs for logaddexp testing""" | ||
return (np.array(input1).astype(dtype), np.array(input2).astype(dtype)) | ||
|
||
def create_model(self, dtype=None): | ||
import torch | ||
|
||
dtype_map = { | ||
"float32": torch.float32, | ||
"float64": torch.float64, | ||
} | ||
|
||
class LogAddExpModel(torch.nn.Module): | ||
def __init__(self, dtype=None): | ||
super(LogAddExpModel, self).__init__() | ||
self.dtype = dtype_map.get(dtype) if dtype else None | ||
|
||
def forward(self, x, y): | ||
if self.dtype: | ||
x = x.to(self.dtype) | ||
y = y.to(self.dtype) | ||
return torch.logaddexp(x, y) | ||
|
||
model_class = LogAddExpModel(dtype) | ||
ref_net = None | ||
|
||
return model_class, ref_net, "aten::logaddexp" | ||
|
||
@pytest.mark.nightly | ||
@pytest.mark.precommit | ||
@pytest.mark.parametrize( | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. please also add |
||
"dtype", | ||
[ | ||
"float32", | ||
"float64", | ||
], | ||
) | ||
@pytest.mark.parametrize( | ||
"input1,input2", | ||
[ | ||
# Basic cases | ||
(0.0, 0.0), # log(exp(0) + exp(0)) = log(2) | ||
(1.0, 1.0), # log(exp(1) + exp(1)) = log(2*e) | ||
(-1.0, -1.0), # log(exp(-1) + exp(-1)) = log(2/e) | ||
|
||
# One large, one small number | ||
(100.0, 0.0), # Tests handling of large differences | ||
(-100.0, 0.0), # Tests handling of negative large differences | ||
|
||
# Both large numbers | ||
(100.0, 100.0), # Tests numerical stability with large numbers | ||
(-100.0, -100.0), # Tests numerical stability with large negative numbers | ||
|
||
# Numbers with different signs | ||
(1.0, -1.0), # Tests mixed positive/negative | ||
(-1.0, 1.0), # Tests mixed negative/positive | ||
|
||
# Near-zero cases | ||
(1e-7, 1e-7), # Tests handling of very small numbers | ||
(-1e-7, -1e-7), # Tests handling of very small negative numbers | ||
], | ||
) | ||
def test_logaddexp_basic(self, dtype, input1, input2, ie_device, precision, ir_version): | ||
self._test( | ||
*self.create_model(dtype), | ||
ie_device, | ||
precision, | ||
ir_version, | ||
kwargs_to_prepare_input={"input1": input1, "input2": input2, "dtype": dtype}, | ||
rtol=1e-5 # Relative tolerance for floating point comparisons | ||
) | ||
|
||
@pytest.mark.nightly | ||
@pytest.mark.precommit | ||
@pytest.mark.parametrize( | ||
"dtype", | ||
[ | ||
"float32", | ||
"float64", | ||
], | ||
) | ||
@pytest.mark.parametrize( | ||
"shape", | ||
[ | ||
(3,), # 1D array | ||
(2, 3), # 2D array | ||
(2, 2, 2), # 3D array | ||
(1, 1), # Broadcasting test | ||
(3, 1), # Broadcasting test | ||
(1, 3), # Broadcasting test | ||
], | ||
) | ||
def test_logaddexp_shapes(self, dtype, shape, ie_device, precision, ir_version): | ||
# Generate random inputs within a reasonable range | ||
input1 = np.random.uniform(-10, 10, shape) | ||
input2 = np.random.uniform(-10, 10, shape) | ||
|
||
self._test( | ||
*self.create_model(dtype), | ||
ie_device, | ||
precision, | ||
ir_version, | ||
kwargs_to_prepare_input={"input1": input1, "input2": input2, "dtype": dtype}, | ||
rtol=1e-5 | ||
) | ||
|
||
@pytest.mark.nightly | ||
@pytest.mark.precommit | ||
def test_logaddexp_broadcasting(self, ie_device, precision, ir_version): | ||
# Test broadcasting with different shapes | ||
input1 = np.array([[1.0, 2.0, 3.0]], dtype=np.float32) # Shape (1, 3) | ||
input2 = np.array([[1.0], [2.0]], dtype=np.float32) # Shape (2, 1) | ||
|
||
self._test( | ||
*self.create_model("float32"), | ||
ie_device, | ||
precision, | ||
ir_version, | ||
kwargs_to_prepare_input={"input1": input1, "input2": input2, "dtype": "float32"}, | ||
rtol=1e-5 | ||
) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think we don't need this casting. It is sufficient to generate input data of required type.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
please remove and the map as well