Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[PT FE] Added aten::logaddexp #28539

Open
wants to merge 5 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
62 changes: 62 additions & 0 deletions src/frontends/pytorch/src/op/logaddexp.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
// Copyright (C) 2018-2025 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

#include "openvino/frontend/pytorch/node_context.hpp"
#include "openvino/op/add.hpp"
#include "openvino/op/convert.hpp"
#include "openvino/op/convert_like.hpp"
#include "openvino/op/exp.hpp"
#include "openvino/op/log.hpp"
#include "openvino/op/maximum.hpp"
#include "openvino/op/subtract.hpp"
#include "utils.hpp"

namespace ov {
namespace frontend {
namespace pytorch {
namespace op {

using namespace ov::op;

OutputVector translate_logaddexp(const NodeContext& context) {
// "aten::logaddexp(Tensor self, Tensor other) -> Tensor"
num_inputs_check(context, 2, 2);

auto input1 = context.get_input(0);
auto input2 = context.get_input(1);

// Convert inputs to floating point type if needed
input1 = context.mark_node(std::make_shared<v0::Convert>(input1, element::f32));
input2 = context.mark_node(std::make_shared<v0::Convert>(input2, element::f32));

// Find maximum of inputs
auto max_val = context.mark_node(std::make_shared<v1::Maximum>(input1, input2));

// Calculate x1 - max and x2 - max
auto diff1 = context.mark_node(std::make_shared<v1::Subtract>(input1, max_val));
auto diff2 = context.mark_node(std::make_shared<v1::Subtract>(input2, max_val));

// Calculate exp(x1 - max) and exp(x2 - max)
auto exp1 = context.mark_node(std::make_shared<v0::Exp>(diff1));
auto exp2 = context.mark_node(std::make_shared<v0::Exp>(diff2));

// Add the scaled exponentials
auto sum = context.mark_node(std::make_shared<v1::Add>(exp1, exp2));

// Take the log and add back the maximum
auto log_sum = context.mark_node(std::make_shared<v0::Log>(sum));
auto result = context.mark_node(std::make_shared<v1::Add>(log_sum, max_val));

// If the output tensor type is different, convert to match
if (input1.get_element_type() != element::f32) {
result = context.mark_node(std::make_shared<v1::ConvertLike>(result, input1));
}

return {result};
};

} // namespace op
} // namespace pytorch
} // namespace frontend
} // namespace ov
2 changes: 2 additions & 0 deletions src/frontends/pytorch/src/op_table.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -293,6 +293,7 @@ OP_CONVERTER(translate_layer_norm_fx);
OP_CONVERTER(translate_leaky_relu_fx);
OP_CONVERTER(translate_log_sigmoid_fx);
OP_CONVERTER(translate_log_softmax_fx);
OP_CONVERTER(translate_logaddexp);
OP_CONVERTER(translate_max_dim_fx);
OP_CONVERTER(translate_max_pool2d_fx);
OP_CONVERTER(translate_max_pool3d_fx);
Expand Down Expand Up @@ -546,6 +547,7 @@ const std::unordered_map<std::string, CreatorFunction> get_supported_ops_ts() {
{"aten::logical_xor", op::translate_xor},
{"aten::log_sigmoid", op::translate_log_sigmoid},
{"aten::log_softmax", op::translate_log_softmax},
{"aten::logaddexp", op::translate_logaddexp},
{"aten::log1p", op::optional_out<op::translate_log1p, 1>},
{"aten::log1p_", op::inplace_op<op::translate_log1p>},
{"aten::log2", op::optional_out<op::translate_log2, 1>},
Expand Down
130 changes: 130 additions & 0 deletions tests/layer_tests/pytorch_tests/test_logaddexp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
# Copyright (C) 2018-2023 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import pytest
import numpy as np
from pytorch_layer_test_class import PytorchLayerTest


class TestLogAddExp(PytorchLayerTest):
def _prepare_input(self, input1, input2, dtype="float32"):
"""Prepare inputs for logaddexp testing"""
return (np.array(input1).astype(dtype), np.array(input2).astype(dtype))

def create_model(self, dtype=None):
import torch

dtype_map = {
"float32": torch.float32,
"float64": torch.float64,
}

class LogAddExpModel(torch.nn.Module):
def __init__(self, dtype=None):
super(LogAddExpModel, self).__init__()
self.dtype = dtype_map.get(dtype) if dtype else None

def forward(self, x, y):
if self.dtype:
x = x.to(self.dtype)
y = y.to(self.dtype)
Comment on lines +28 to +30
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think we don't need this casting. It is sufficient to generate input data of required type.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

please remove and the map as well

return torch.logaddexp(x, y)

model_class = LogAddExpModel(dtype)
ref_net = None

return model_class, ref_net, "aten::logaddexp"

@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.parametrize(
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

please also add @pytest.mark.precommit_torch_export. Take a look how other operations are enabled for torch.export case.
In order to test it locally, set env var PYTORCH_TRACING_MODE=EXPORT: https://github.com/openvinotoolkit/openvino/blob/master/.github/workflows/job_pytorch_layer_tests.yml#L132

"dtype",
[
"float32",
"float64",
],
)
@pytest.mark.parametrize(
"input1,input2",
[
# Basic cases
(0.0, 0.0), # log(exp(0) + exp(0)) = log(2)
(1.0, 1.0), # log(exp(1) + exp(1)) = log(2*e)
(-1.0, -1.0), # log(exp(-1) + exp(-1)) = log(2/e)

# One large, one small number
(100.0, 0.0), # Tests handling of large differences
(-100.0, 0.0), # Tests handling of negative large differences

# Both large numbers
(100.0, 100.0), # Tests numerical stability with large numbers
(-100.0, -100.0), # Tests numerical stability with large negative numbers

# Numbers with different signs
(1.0, -1.0), # Tests mixed positive/negative
(-1.0, 1.0), # Tests mixed negative/positive

# Near-zero cases
(1e-7, 1e-7), # Tests handling of very small numbers
(-1e-7, -1e-7), # Tests handling of very small negative numbers
],
)
def test_logaddexp_basic(self, dtype, input1, input2, ie_device, precision, ir_version):
self._test(
*self.create_model(dtype),
ie_device,
precision,
ir_version,
kwargs_to_prepare_input={"input1": input1, "input2": input2, "dtype": dtype},
rtol=1e-5 # Relative tolerance for floating point comparisons
)

@pytest.mark.nightly
@pytest.mark.precommit
@pytest.mark.parametrize(
"dtype",
[
"float32",
"float64",
],
)
@pytest.mark.parametrize(
"shape",
[
(3,), # 1D array
(2, 3), # 2D array
(2, 2, 2), # 3D array
(1, 1), # Broadcasting test
(3, 1), # Broadcasting test
(1, 3), # Broadcasting test
],
)
def test_logaddexp_shapes(self, dtype, shape, ie_device, precision, ir_version):
# Generate random inputs within a reasonable range
input1 = np.random.uniform(-10, 10, shape)
input2 = np.random.uniform(-10, 10, shape)

self._test(
*self.create_model(dtype),
ie_device,
precision,
ir_version,
kwargs_to_prepare_input={"input1": input1, "input2": input2, "dtype": dtype},
rtol=1e-5
)

@pytest.mark.nightly
@pytest.mark.precommit
def test_logaddexp_broadcasting(self, ie_device, precision, ir_version):
# Test broadcasting with different shapes
input1 = np.array([[1.0, 2.0, 3.0]], dtype=np.float32) # Shape (1, 3)
input2 = np.array([[1.0], [2.0]], dtype=np.float32) # Shape (2, 1)

self._test(
*self.create_model("float32"),
ie_device,
precision,
ir_version,
kwargs_to_prepare_input={"input1": input1, "input2": input2, "dtype": "float32"},
rtol=1e-5
)
Loading