Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added Relevant support for aten::quantile and it's tests. #28599

Open
wants to merge 20 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
20 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
80 changes: 80 additions & 0 deletions src/frontends/pytorch/src/op/quantile.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,80 @@
// Copyright (C) 2018-2025 Intel Corporation
// SPDX-License-Identifier: Apache-2.0
//

#include "openvino/frontend/pytorch/node_context.hpp"
#include "openvino/op/convert.hpp"
#include "openvino/op/gather.hpp"
#include "openvino/op/range.hpp"
#include "openvino/op/reshape.hpp"
#include "openvino/opsets/opset10.hpp"
#include "openvino/op/multiply.hpp"
#include "openvino/op/floor.hpp"
#include "openvino/op/add.hpp"
#include "openvino/op/subtract.hpp"
#include "openvino/op/maximum.hpp"
#include "openvino/op/minimum.hpp"
#include "utils.hpp"

using namespace ov::op;

OutputVector translate_quantile(const NodeContext& context) {
num_inputs_check(context, 2, 5);

auto input = context.get_input(0);
auto q = context.get_input(1); // Quantile(s), can be float or tensor

auto dim = context.input_is_none(2) ? -1 : context.get_input<int64_t>(2);
auto keepdim = context.input_is_none(3) ? false : context.get_input<bool>(3);
auto interpolation = context.input_is_none(4) ? "linear" : context.get_input<std::string>(4);


if (dim == -1) {
input = context.mark_node(std::make_shared<v0::Reshape>(
input, context.mark_node(std::make_shared<v0::Range>(0, input.get_shape().size(), 1)), true));
dim = 0;
}

auto sorted = context.mark_node(std::make_shared<v0::Sort>(input, dim, true)); // Ascending order

auto dim_size = input.get_shape()[dim];

auto indices = context.mark_node(std::make_shared<v0::Multiply>(q, dim_size - 1));
auto lower_indices = context.mark_node(std::make_shared<v0::Floor>(indices));
auto upper_indices = context.mark_node(std::make_shared<v1::Add>(lower_indices, 1));
auto weights = context.mark_node(std::make_shared<v1::Subtract>(indices, lower_indices));
auto lower_values = context.mark_node(std::make_shared<v1::Gather>(sorted, lower_indices, dim));
auto upper_values = context.mark_node(std::make_shared<v1::Gather>(sorted, upper_indices, dim));

Output<Node> result;
if (interpolation == "linear") {
result = context.mark_node(std::make_shared<v1::Add>(
lower_values, context.mark_node(std::make_shared<v1::Multiply>(weights, upper_values))));
} else if (interpolation == "lower") {
result = lower_values;
} else if (interpolation == "higher") {
result = upper_values;
} else if (interpolation == "nearest") {
auto nearest_indices = context.mark_node(std::make_shared<v0::Round>(indices));
result = context.mark_node(std::make_shared<v1::Gather>(sorted, nearest_indices, dim));
} else if (interpolation == "midpoint") {
result = context.mark_node(std::make_shared<v1::Add>(
lower_values, context.mark_node(std::make_shared<v1::Multiply>(
context.mark_node(std::make_shared<v0::Constant>(element::f32, Shape{}, 0.5)),
context.mark_node(std::make_shared<v1::Subtract>(upper_values, lower_values))))));
} else {
throw std::runtime_error("Unsupported interpolation method: " + interpolation);
}
if (!keepdim) {
auto reshape_dims = input.get_shape();
reshape_dims.erase(reshape_dims.begin() + dim);
result = context.mark_node(std::make_shared<v0::Reshape>(result, reshape_dims, true));
}

return {result};
}

} // namespace op
} // namespace pytorch
} // namespace frontend
} // namespace ov
2 changes: 2 additions & 0 deletions src/frontends/pytorch/src/op_table.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -191,6 +191,7 @@ OP_CONVERTER(translate_quantized_add);
OP_CONVERTER(translate_quantized_add_relu);
OP_CONVERTER(translate_quantized_hardswish);
OP_CONVERTER(translate_quantized_mul);
OP_CONVERTER(translate_quantile);
OP_CONVERTER(translate_range_length);
OP_CONVERTER(translate_rand);
OP_CONVERTER(translate_randn);
Expand Down Expand Up @@ -747,6 +748,7 @@ const std::unordered_map<std::string, CreatorFunction> get_supported_ops_ts() {
{"quantized::hardswish", op::translate_quantized_hardswish},
{"quantized::linear", op::translate_quantized_linear},
{"quantized::mul", op::translate_quantized_mul},
{"quantized::relu", op::translate_quantile},
{"torchvision::deform_conv2d", op::translate_deform_conv},
{"torchvision::nms", op::translate_nms},
{"torchvision::roi_align", op::translate_roi_align},
Expand Down
36 changes: 36 additions & 0 deletions tests/layer_tests/pytorch_tests/test_quantile.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

import pytest
import numpy as np
import torch
from pytorch_layer_test_class import PytorchLayerTest


class TestQuantile(PytorchLayerTest):
def _prepare_input(self):
input_tensor = np.random.randn(1, 3, 224, 224).astype(np.float32)
quantile = np.array(0.5, dtype=np.float32)
return (input_tensor, quantile)

def create_model(self, dim=None, keepdim=False):
class aten_quantile(torch.nn.Module):
def __init__(self, dim, keepdim):
super(aten_quantile, self).__init__()
self.dim = dim
self.keepdim = keepdim

def forward(self, x, q):
return torch.quantile(x, q, dim=self.dim, keepdim=self.keepdim)

ref_net = None

return aten_quantile(dim, keepdim), ref_net, "aten::quantile"

@pytest.mark.parametrize("dim", [None, 0, 1, 2, 3, -1, -2, -3])
@pytest.mark.parametrize("keepdim", [True, False])
@pytest.mark.nightly
@pytest.mark.precommit
def test_quantile(self, dim, keepdim, ie_device, precision, ir_version):
self._test(*self.create_model(dim, keepdim), ie_device, precision, ir_version)