Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[TF FE] feat: implement complex type support for selectv2 #28773

Merged
merged 7 commits into from
Feb 2, 2025
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
56 changes: 34 additions & 22 deletions src/frontends/tensorflow_common/src/op/select.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,19 @@ OutputVector translate_select_base_op(const NodeContext& node,
set_node_name(node.get_name(), select);
return {select};
}

bool has_complex_inputs(Output<Node>& x, Output<Node>& y, element::Type& complex_part_type) {
auto complex_type_mark_x = as_type_ptr<ComplexTypeMark>(x.get_node_shared_ptr());
auto complex_type_mark_y = as_type_ptr<ComplexTypeMark>(y.get_node_shared_ptr());
if (complex_type_mark_x) {
x = complex_type_mark_x->input_value(0);
complex_part_type = complex_type_mark_x->get_complex_part_type();
}
if (complex_type_mark_y) {
y = complex_type_mark_y->input_value(0);
complex_part_type = complex_type_mark_y->get_complex_part_type();
}
return (complex_type_mark_x || complex_type_mark_y);
}
OutputVector translate_select_v2_op(const NodeContext& node) {
// according to the TensorFlow documentation. See in the code:
// https://github.com/tensorflow/tensorflow/blob/v2.4.1/tensorflow/lite/kernels/select.cc#L188-L211
Expand All @@ -40,10 +52,23 @@ OutputVector translate_select_v2_op(const NodeContext& node) {
// is true or the value of 'y' if false. There are valid condition input sizes:
// 1. Either the same shape (in which case the select is elementwise), or
// 2. Broadcastable shapes between 'condition', 'x' and 'y'.
default_op_checks(node, 3, {"SelectV2", "SELECT_V2"});
// no preparation for inputs are needed
// inputs are already NumPy broadcastable
return translate_select_base_op(node, node.get_input(0), node.get_input(1), node.get_input(2));
default_op_checks(node, 3, {"SelectV2", "SELECT_V2"}, true);
auto condition = node.get_input(0);
auto x = node.get_input(1);
auto y = node.get_input(2);

element::Type complex_part_type;
auto is_complex = has_complex_inputs(x, y, complex_part_type);

if (is_complex) {
auto const_negative_one = make_shared<v0::Constant>(element::i32, Shape{1}, -1);
auto new_condition = make_shared<v0::Unsqueeze>(condition, const_negative_one);
auto result = translate_select_base_op(node, new_condition, x, y);
auto complex_result = make_shared<ComplexTypeMark>(result[0].get_node_shared_ptr(), complex_part_type);
return {complex_result->output(0)};
} else {
return translate_select_base_op(node, condition, x, y);
}
}

OutputVector translate_select_op(const NodeContext& node) {
Expand All @@ -59,21 +84,9 @@ OutputVector translate_select_op(const NodeContext& node) {
auto condition = node.get_input(0);
auto x = node.get_input(1);
auto y = node.get_input(2);
auto complex_type_mark_x = as_type_ptr<ComplexTypeMark>(x.get_node_shared_ptr());
auto complex_type_mark_y = as_type_ptr<ComplexTypeMark>(y.get_node_shared_ptr());

auto is_complex = (complex_type_mark_x || complex_type_mark_y);
element::Type complex_part_type;

if (complex_type_mark_x) {
x = complex_type_mark_x->input_value(0);
complex_part_type = complex_type_mark_x->get_complex_part_type();
}

if (complex_type_mark_y) {
y = complex_type_mark_y->input_value(0);
complex_part_type = complex_type_mark_y->get_complex_part_type();
}
auto is_complex = has_complex_inputs(x, y, complex_part_type);

// compute number of dimensions to unsqueeze the condition
auto cond_rank = compute_subgraph_scalar_rank(condition, element::i32);
Expand All @@ -85,14 +98,13 @@ OutputVector translate_select_op(const NodeContext& node) {
auto new_subshape = make_shared<v3::Broadcast>(const_one, num_new_axes);
auto cond_shape = make_shared<v3::ShapeOf>(condition, element::i32);
// use extra dimensions in the begin to avoid concatenation of empty tensors that is not supported by Concat
auto const_1 = make_shared<v0::Constant>(element::i32, Shape{1}, 1);
auto new_cond_shape = make_shared<v0::Concat>(OutputVector{const_1, cond_shape, new_subshape}, 0);
auto new_cond_shape = make_shared<v0::Concat>(OutputVector{const_one, cond_shape, new_subshape}, 0);

// prepare the condition to have the same rank as operands `x` and `y`
auto prep_cond = make_shared<v1::Reshape>(condition, new_cond_shape, false)->output(0);
// squeeze prep_cond by one extra dimension specially added
auto const_0 = make_shared<v0::Constant>(element::i32, Shape{1}, 0);
prep_cond = make_shared<v0::Squeeze>(prep_cond, const_0);
auto const_zero = make_shared<v0::Constant>(element::i32, Shape{1}, 0);
prep_cond = make_shared<v0::Squeeze>(prep_cond, const_zero);

auto result = translate_select_base_op(node, prep_cond, x, y);
if (is_complex) {
Expand Down
49 changes: 49 additions & 0 deletions tests/layer_tests/tensorflow_tests/test_tf_SelectV2.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,3 +51,52 @@ def test_select_v2_basic(self, params, ie_device, precision, ir_version, temp_di
self._test(*self.create_select_v2_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_legacy_frontend=use_legacy_frontend)


class TestComplexSelectV2(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
rng = np.random.default_rng()
assert 'cond:0' in inputs_info, "Test error: inputs_info must contain `cond`"
assert 'x_real:0' in inputs_info, "Test error: inputs_info must contain `x_real`"
assert 'x_imag:0' in inputs_info, "Test error: inputs_info must contain `x_imag`"
assert 'y_real:0' in inputs_info, "Test error: inputs_info must contain `y_real`"
assert 'y_imag:0' in inputs_info, "Test error: inputs_info must contain `y_imag`"
cond_shape = inputs_info['cond:0']
inputs_data = {}
inputs_data['cond:0'] = np.random.randint(0, 2, cond_shape).astype(bool)
for part in ['x_real:0', 'x_imag:0', 'y_real:0', 'y_imag:0']:
inputs_data[part] = 4 * rng.random(inputs_info[part]).astype(np.float32) - 2
return inputs_data

def create_complex_select_v2_net(self, cond_shape, x_shape, y_shape):
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
cond = tf.compat.v1.placeholder(tf.bool, cond_shape, 'cond')
x_real = tf.compat.v1.placeholder(tf.float32, x_shape, 'x_real')
x_imag = tf.compat.v1.placeholder(tf.float32, x_shape, 'x_imag')
y_real = tf.compat.v1.placeholder(tf.float32, y_shape, 'y_real')
y_imag = tf.compat.v1.placeholder(tf.float32, y_shape, 'y_imag')
complex_x = tf.raw_ops.Complex(real=x_real, imag=x_imag)
complex_y = tf.raw_ops.Complex(real=y_real, imag=y_imag)
complex_select = tf.raw_ops.SelectV2(condition=cond, t=complex_x, e=complex_y)
tf.raw_ops.Real(input=complex_select)
tf.raw_ops.Imag(input=complex_select)
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
return tf_net, None

test_data_basic = [
dict(cond_shape=[3, 1], x_shape=[3, 1], y_shape=[3, 1]),
dict(cond_shape=[], x_shape=[2], y_shape=[3, 2]),
dict(cond_shape=[4], x_shape=[3, 2, 1], y_shape=[2, 4]),
]

@pytest.mark.parametrize("params", test_data_basic)
@pytest.mark.precommit
@pytest.mark.nightly
def test_complex_select_v2(self, params, ie_device, precision, ir_version, temp_dir,
use_legacy_frontend):
self._test(*self.create_complex_select_v2_net(**params),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_legacy_frontend=use_legacy_frontend)
Loading