Skip to content

Commit

Permalink
[skip ci] Update the website
Browse files Browse the repository at this point in the history
  • Loading branch information
ckhroulev committed Nov 28, 2023
1 parent 18de261 commit f663569
Show file tree
Hide file tree
Showing 6 changed files with 374 additions and 374 deletions.
2 changes: 1 addition & 1 deletion feed.xml
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
<?xml version="1.0" encoding="utf-8"?><feed xmlns="http://www.w3.org/2005/Atom" xml:lang="en"><generator uri="https://jekyllrb.com/" version="3.9.3">Jekyll</generator><link href="https://www.pism.io/feed.xml" rel="self" type="application/atom+xml" /><link href="https://www.pism.io/" rel="alternate" type="text/html" hreflang="en" /><updated>2023-11-28T15:31:36+00:00</updated><id>https://www.pism.io/feed.xml</id><title type="html">PISM</title><subtitle>Website for PISM, the Parallel Ice Sheet Model</subtitle><author><name>The PISM Authors</name><email>[email protected]</email></author><entry><title type="html">PISM 2.1 is out</title><link href="https://www.pism.io/news/2023/11/27/pism2.1/" rel="alternate" type="text/html" title="PISM 2.1 is out" /><published>2023-11-27T00:00:00+00:00</published><updated>2023-11-27T00:00:00+00:00</updated><id>https://www.pism.io/news/2023/11/27/pism2.1</id><content type="html" xml:base="https://www.pism.io/news/2023/11/27/pism2.1/">&lt;p&gt;We are pleased to announce the release of PISM v2.1.&lt;/p&gt;
<?xml version="1.0" encoding="utf-8"?><feed xmlns="http://www.w3.org/2005/Atom" xml:lang="en"><generator uri="https://jekyllrb.com/" version="3.9.3">Jekyll</generator><link href="https://www.pism.io/feed.xml" rel="self" type="application/atom+xml" /><link href="https://www.pism.io/" rel="alternate" type="text/html" hreflang="en" /><updated>2023-11-28T19:45:53+00:00</updated><id>https://www.pism.io/feed.xml</id><title type="html">PISM</title><subtitle>Website for PISM, the Parallel Ice Sheet Model</subtitle><author><name>The PISM Authors</name><email>[email protected]</email></author><entry><title type="html">PISM 2.1 is out</title><link href="https://www.pism.io/news/2023/11/27/pism2.1/" rel="alternate" type="text/html" title="PISM 2.1 is out" /><published>2023-11-27T00:00:00+00:00</published><updated>2023-11-27T00:00:00+00:00</updated><id>https://www.pism.io/news/2023/11/27/pism2.1</id><content type="html" xml:base="https://www.pism.io/news/2023/11/27/pism2.1/">&lt;p&gt;We are pleased to announce the release of PISM v2.1.&lt;/p&gt;

&lt;h2 id=&quot;notable-changes-compared-to-v20&quot;&gt;Notable changes compared to v2.0&lt;/h2&gt;

Expand Down
14 changes: 7 additions & 7 deletions publications/applications.bib
Original file line number Diff line number Diff line change
Expand Up @@ -628,7 +628,7 @@ @Article{Niuetal2021

@Article{Koldtoftetal2021,
author={Koldtoft, I. and Grinsted, A. and Vinther, B. M. and Hvidberg, C. S.},
title={Ice thickness and volume of the Renland Ice Cap, East Greenland},
title={Ice thickness and volume of the {Renland Ice Cap}, {East Greenland}},
journal={Journal of Glaciology},
year={2021},
pages={1--13},
Expand All @@ -648,7 +648,7 @@ @Article{SchlemmLevermann2021

@Article{Rodehackeetal2020,
AUTHOR = {Rodehacke, C. B. and Pfeiffer, M. and Semmler, T. and Gurses, \"O. and Kleiner, T.},
TITLE = {Future sea level contribution from Antarctica inferred from {CMIP5} model forcing and its dependence on precipitation ansatz},
TITLE = {Future sea level contribution from {Antarctica} inferred from {CMIP5} model forcing and its dependence on precipitation ansatz},
JOURNAL = {Earth System Dynamics},
VOLUME = {11},
YEAR = {2020},
Expand All @@ -669,7 +669,7 @@ @article{Stapetal2020

@Article{Haydenetal2020,
author = {Hayden, A.-M. and Wilmes, S.-B. and Gomez, N. and Green, J.A.M. and Pan, L. and Han, H. and Golledge, N.R.},
title = {Multi-century impacts of ice sheet retreat on sea level and ocean tides in {H}udson {B}ay},
title = {Multi-century impacts of ice sheet retreat on sea level and ocean tides in {Hudson} {Bay}},
journal = {Journal of Geophysical Research: Oceans},
volume = {125},
number = {11},
Expand All @@ -690,7 +690,7 @@ @Article{Seroussietal2020

@Article{Candasetal2020,
author = {Candaş, A. and Sarikaya, M. A. and KÖSE, O. and Şen, Ö. L. and Çiner, A.},
title = {Modelling a Last Glacial Maximum ice cap with the Parallel Ice Sheet Model to infer palaeoclimate in south-west Turkey},
title = {Modelling a {Last Glacial Maximum} ice cap with the {Parallel Ice Sheet Model} to infer palaeoclimate in south-west {Turkey}},
journal = {Journal of Quaternary Science},
doi = {10.1002/jqs.3239},
year = {2020},
Expand Down Expand Up @@ -728,7 +728,7 @@ @Article{Zeitzetal2020

@article{Eisenetal2020,
author={Eisen, O. and Winter, A. and Steinhage, D. and Kleiner, T. and Humbert, A.},
title={Basal roughness of the East Antarctic Ice Sheet in relation to flow speed and basal thermal state},
title={Basal roughness of the {East Antarctic Ice Sheet} in relation to flow speed and basal thermal state},
journal={Annals of Glaciology},
volume={61},
number={81},
Expand All @@ -739,7 +739,7 @@ @article{Eisenetal2020

@article{Ackermannetal202,
author = {Ackermann, L. and Danek, C. and Gierz, P. and Lohmann, G.},
title = {AMOC Recovery in a Multicentennial Scenario Using a Coupled Atmosphere-Ocean-Ice Sheet Model},
title = {{AMOC} Recovery in a Multicentennial Scenario Using a Coupled Atmosphere-Ocean-Ice Sheet Model},
journal = {Geophysical Research Letters},
volume = {47},
number = {16},
Expand All @@ -750,7 +750,7 @@ @article{Ackermannetal202

@article{Sutteretal2020,
author = {Sutter, J. and Eisen, O. and Werner, M. and Grosfeld, K. and Kleiner, T. and Fischer, H.},
title = {Limited Retreat of the Wilkes Basin Ice Sheet During the Last Interglacial},
title = {Limited Retreat of the {Wilkes} Basin Ice Sheet During the Last Interglacial},
journal = {Geophysical Research Letters},
volume = {47},
number = {13},
Expand Down
12 changes: 6 additions & 6 deletions publications/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -347,7 +347,7 @@ <h3 id="2021">2021</h3>
<li>W. Ji, A. Robel, E. Tziperman, and J. Yang. Laurentide ice saddle mergers drive rapid sea level drops during glaciations. <em>Geophysical Research Letters</em>, 48(14):e2021GL094263, 2021. <a href="https://doi.org/10.1029/2021GL094263">doi:10.1029/2021GL094263</a>.</li>
<li>Guillaume Jouvet, Guillaume Cordonnier, Byungsoo Kim, Martin Lüthi, Andreas Vieli, and Andy Aschwanden. Deep learning speeds up ice flow modelling by several orders of magnitude. <em>Journal of Glaciology</em>, pages 1–14, 2021. <a href="https://doi.org/10.1017/jog.2021.120">doi:10.1017/jog.2021.120</a>.</li>
<li>Gregor Knorr, Stephen Barker, Xu Zhang, Gerrit Lohmann, Xun Gong, Paul Gierz, Christian Stepanek, and Lennert B. Stap. A salty deep ocean as a prerequisite for glacial termination. <em>Nature Geoscience</em>, 2021. <a href="https://doi.org/10.1038/s41561-021-00857-3">doi:10.1038/s41561-021-00857-3</a>.</li>
<li>I. Koldtoft, A. Grinsted, B. M. Vinther, and C. S. Hvidberg. Ice thickness and volume of the renland ice cap, east greenland. <em>Journal of Glaciology</em>, pages 1–13, 2021. <a href="https://doi.org/10.1017/jog.2021.11">doi:10.1017/jog.2021.11</a>.</li>
<li>I. Koldtoft, A. Grinsted, B. M. Vinther, and C. S. Hvidberg. Ice thickness and volume of the Renland Ice Cap, East Greenland. <em>Journal of Glaciology</em>, pages 1–13, 2021. <a href="https://doi.org/10.1017/jog.2021.11">doi:10.1017/jog.2021.11</a>.</li>
<li>M. Kreuzer, R. Reese, W. N. Huiskamp, S. Petri, T. Albrecht, G. Feulner, and R. Winkelmann. Coupling framework (1.0) for the PISM (1.1.4) ice sheet model and the MOM5 (5.1.0) ocean model via the PICO ice shelf cavity model in an Antarctic domain. <em>Geoscientific Model Development</em>, 14(6):3697–3714, 2021. <a href="https://doi.org/10.5194/gmd-14-3697-2021">doi:10.5194/gmd-14-3697-2021</a>.</li>
<li>J. Lai and A. M. Anders. Climatic controls on mountain glacier basal thermal regimes dictate spatial patterns of glacial erosion. <em>Earth Surface Dynamics</em>, 9(4):845–859, 2021. <a href="https://doi.org/10.5194/esurf-9-845-2021">doi:10.5194/esurf-9-845-2021</a>.</li>
<li>D. P. Lowry, M. Krapp, N. R. Golledge, and A. Alevropoulos-Borrill. The influence of emissions scenarios on future Antarctic ice loss is unlikely to emerge this century. <em>Communications Earth &amp; Environment</em>, 2021. <a href="https://doi.org/10.1038/s43247-021-00289-2">doi:10.1038/s43247-021-00289-2</a>.</li>
Expand All @@ -366,13 +366,13 @@ <h3 id="2021">2021</h3>
<h3 id="2020">2020</h3>

<ol>
<li>L. Ackermann, C. Danek, P. Gierz, and G. Lohmann. Amoc recovery in a multicentennial scenario using a coupled atmosphere-ocean-ice sheet model. <em>Geophysical Research Letters</em>, 47(16):e2019GL086810, 2020. <a href="https://doi.org/10.1029/2019GL086810">doi:10.1029/2019GL086810</a>.</li>
<li>L. Ackermann, C. Danek, P. Gierz, and G. Lohmann. AMOC recovery in a multicentennial scenario using a coupled atmosphere-ocean-ice sheet model. <em>Geophysical Research Letters</em>, 47(16):e2019GL086810, 2020. <a href="https://doi.org/10.1029/2019GL086810">doi:10.1029/2019GL086810</a>.</li>
<li>T. Albrecht, R. Winkelmann, and A. Levermann. Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) – Part 1: Boundary conditions and climatic forcing. <em>The Cryosphere</em>, 14(2):599–632, 2020. <a href="https://doi.org/10.5194/tc-14-599-2020">doi:10.5194/tc-14-599-2020</a>.</li>
<li>T. Albrecht, R. Winkelmann, and A. Levermann. Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) – Part 2: Parameter ensemble analysis. <em>The Cryosphere</em>, 14(2):633–656, 2020. <a href="https://doi.org/10.5194/tc-14-633-2020">doi:10.5194/tc-14-633-2020</a>.</li>
<li>A. Candaş, M. A. Sarikaya, O. KÖSE, Ö. L. Şen, and A. Çiner. Modelling a last glacial maximum ice cap with the parallel ice sheet model to infer palaeoclimate in south-west turkey. <em>Journal of Quaternary Science</em>, 2020. <a href="https://doi.org/10.1002/jqs.3239">doi:10.1002/jqs.3239</a>.</li>
<li>A. Candaş, M. A. Sarikaya, O. KÖSE, Ö. L. Şen, and A. Çiner. Modelling a Last Glacial Maximum ice cap with the Parallel Ice Sheet Model to infer palaeoclimate in south-west Turkey. <em>Journal of Quaternary Science</em>, 2020. <a href="https://doi.org/10.1002/jqs.3239">doi:10.1002/jqs.3239</a>.</li>
<li>P. U. Clark, F. He, N. R. Golledge, J. X. Mitrovica, A. Dutton, J. S. Hoffman, and S. Dendy. Oceanic forcing of penultimate deglacial and last interglacial sea-level rise. <em>Nature</em>, 577(7792):660–664, 2020. <a href="https://doi.org/10.1038/s41586-020-1931-7">doi:10.1038/s41586-020-1931-7</a>.</li>
<li>Stephen L. Cornford, Helene Seroussi, Xylar S. Asay-Davis, G. Hilmar Gudmundsson, Rob Arthern, Chris Borstad, Julia Christmann, Thiago Dias dos Santos, Johannes Feldmann, Daniel Goldberg, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, Gunter Leguy, William H. Lipscomb, Nacho Merino, Gaël Durand, Mathieu Morlighem, David Pollard, Martin Rückamp, C. Rosie Williams, and Hongju Yu. Results of the third Marine Ice Sheet Model Intercomparison Project (MISMIP+). <em>The Cryosphere</em>, 14(7):2283–2301, jul 2020. <a href="https://doi.org/10.5194/tc-14-2283-2020">doi:10.5194/tc-14-2283-2020</a>.</li>
<li>O. Eisen, A. Winter, D. Steinhage, T. Kleiner, and A. Humbert. Basal roughness of the east antarctic ice sheet in relation to flow speed and basal thermal state. <em>Annals of Glaciology</em>, 61(81):162–175, 2020. <a href="https://doi.org/10.1017/aog.2020.47">doi:10.1017/aog.2020.47</a>.</li>
<li>O. Eisen, A. Winter, D. Steinhage, T. Kleiner, and A. Humbert. Basal roughness of the East Antarctic Ice Sheet in relation to flow speed and basal thermal state. <em>Annals of Glaciology</em>, 61(81):162–175, 2020. <a href="https://doi.org/10.1017/aog.2020.47">doi:10.1017/aog.2020.47</a>.</li>
<li>J. Garbe, T. Albrecht, A. Levermann, J. Donges, and R. Winkelmann. The hysteresis of the antarctic ice sheet. <em>Nature</em>, 585:538–544, 2020. <a href="https://doi.org/10.1038/s41586-020-2727-5">doi:10.1038/s41586-020-2727-5</a>.</li>
<li>H. Goelzer, S. Nowicki, A. Payne, E. Larour, H. Seroussi, W. H. Lipscomb, J. Gregory, A. Abe-Ouchi, A. Shepherd, E. Simon, C. Agosta, P. Alexander, A. Aschwanden, A. Barthel, R. Calov, C. Chambers, Y. Choi, J. Cuzzone, C. Dumas, T. Edwards, D. Felikson, X. Fettweis, N. R. Golledge, R. Greve, A. Humbert, P. Huybrechts, S. Le clec’h, V. Lee, G. Leguy, C. Little, D. P. Lowry, M. Morlighem, I. Nias, A. Quiquet, M. Rückamp, N.-J. Schlegel, D. A. Slater, R. S. Smith, F. Straneo, L. Tarasov, R. van de Wal, and M. van den Broeke. The future sea-level contribution of the Greenland ice sheet: a multi-model ensemble study of ISMIP6. <em>The Cryosphere</em>, 14(9):3071–3096, 2020. <a href="https://doi.org/10.5194/tc-14-3071-2020">doi:10.5194/tc-14-3071-2020</a>.</li>
<li>N. R. Golledge. Long-term projections of sea-level rise from ice sheets. <em>WIREs Climate Change</em>, 2020. <a href="https://doi.org/10.1002/wcc.634">doi:10.1002/wcc.634</a>.</li>
Expand All @@ -384,12 +384,12 @@ <h3 id="2020">2020</h3>
<li>R. A. Parsons, T. Kanzaki, R. Hemmi, and H. Miyamoto. Cold-based glaciation of pavonis mons, mars: evidence for moraine deposition during glacial advance. <em>Progress in Earth and Planetary Science</em>, 2020. <a href="https://doi.org/10.1186/s40645-020-0323-9">doi:10.1186/s40645-020-0323-9</a>.</li>
<li>R. Reese, A. Levermann, T. Albrecht, H. Seroussi, and R. Winkelmann. The role of history and strength of the oceanic forcing in sea level projections from antarctica with the Parallel Ice Sheet Model. <em>The Cryosphere</em>, 14(9):3097–3110, 2020. <a href="https://doi.org/10.5194/tc-14-3097-2020">doi:10.5194/tc-14-3097-2020</a>.</li>
<li>D. H. Roberts, C. Ó Cofaigh, C. K. Ballantyne, M. Burke, R. C. Chiverrell, D. J. A. Evans, C. D. Clark, G. A. T. Duller, J. Ely, D. Fabel, D. Small, R. K. Smedley, and S. L. Callard. The deglaciation of the western sector of the Irish Ice Sheet from the inner continental shelf to its terrestrial margin. <em>Boreas</em>, 2020. <a href="https://doi.org/10.1111/bor.12448">doi:10.1111/bor.12448</a>.</li>
<li>C. B. Rodehacke, M. Pfeiffer, T. Semmler, Ö. Gurses, and T. Kleiner. Future sea level contribution from antarctica inferred from CMIP5 model forcing and its dependence on precipitation ansatz. <em>Earth System Dynamics</em>, 11(4):1153–1194, 2020. <a href="https://doi.org/10.5194/esd-11-1153-2020">doi:10.5194/esd-11-1153-2020</a>.</li>
<li>C. B. Rodehacke, M. Pfeiffer, T. Semmler, Ö. Gurses, and T. Kleiner. Future sea level contribution from Antarctica inferred from CMIP5 model forcing and its dependence on precipitation ansatz. <em>Earth System Dynamics</em>, 11(4):1153–1194, 2020. <a href="https://doi.org/10.5194/esd-11-1153-2020">doi:10.5194/esd-11-1153-2020</a>.</li>
<li>L. S. Schmidt, G. Ađalgeirsdóttir, F. Pálsson, P. L. Langen, S. Guđmundsson, and H. Björnsson. Dynamic simulations of Vatnajökull ice cap from 1980 to 2300. <em>Journal of Glaciology</em>, 66(255):97–112, 2020. <a href="https://doi.org/10.1017/jog.2019.90">doi:10.1017/jog.2019.90</a>.</li>
<li>H. Seroussi, S. Nowicki, A. J. Payne, H. Goelzer, W. H. Lipscomb, A. Abe-Ouchi, C. Agosta, T. Albrecht, X. Asay-Davis, A. Barthel, R. Calov, R. Cullather, C. Dumas, B. K. Galton-Fenzi, R. Gladstone, N. R. Golledge, J. M. Gregory, R. Greve, T. Hattermann, M. J. Hoffman, A. Humbert, P. Huybrechts, N. C. Jourdain, T. Kleiner, E. Larour, G. R. Leguy, D. P. Lowry, C. M. Little, M. Morlighem, F. Pattyn, T. Pelle, S. F. Price, A. Quiquet, R. Reese, N.-J. Schlegel, A. Shepherd, E. Simon, R. S. Smith, F. Straneo, S. Sun, L. D. Trusel, J. Van Breedam, R. S. W. van de Wal, R. Winkelmann, C. Zhao, T. Zhang, and T. Zwinger. ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century. <em>The Cryosphere</em>, 14(9):3033–3070, 2020. <a href="https://doi.org/10.5194/tc-14-3033-2020">doi:10.5194/tc-14-3033-2020</a>.</li>
<li>L. B. Stap, G. Knorr, and G. Lohmann. Anti-phased Miocene ice volume and CO2 changes by transient Antarctic Ice Sheet variability. <em>Paleoceanography and Paleoclimatology</em>, 2020. <a href="https://doi.org/10.1029/2020PA003971">doi:10.1029/2020PA003971</a>.</li>
<li>S. Sun, F. Pattyn, E. G. Simon, T. Albrecht, S. Cornford, R. Calov, C. Dumas, F. Gillet-Chaulet, H. Goelzer, N. R. Golledge, and others. Antarctic ice sheet response to sudden and sustained ice-shelf collapse (abumip). <em>Journal of Glaciology</em>, pages 1–14, 2020. <a href="https://doi.org/10.1017/jog.2020.67">doi:10.1017/jog.2020.67</a>.</li>
<li>J. Sutter, O. Eisen, M. Werner, K. Grosfeld, T. Kleiner, and H. Fischer. Limited retreat of the wilkes basin ice sheet during the last interglacial. <em>Geophysical Research Letters</em>, 2020. <a href="https://doi.org/10.1029/2020GL088131">doi:10.1029/2020GL088131</a>.</li>
<li>J. Sutter, O. Eisen, M. Werner, K. Grosfeld, T. Kleiner, and H. Fischer. Limited retreat of the Wilkes basin ice sheet during the last interglacial. <em>Geophysical Research Letters</em>, 2020. <a href="https://doi.org/10.1029/2020GL088131">doi:10.1029/2020GL088131</a>.</li>
<li>C. S. M. Turney, C. J. Fogwill, N. R. Golledge, N. P. McKay, E. van Sebille, R. T. Jones, D. Etheridge, M. Rubino, D. P. Thornton, S. M. Davies, C. B. Ramsey, Z. A. Thomas, M. I. Bird, N. C. Munksgaard, M. Kohno, J. Woodward, K. Winter, L. S. Weyrich, C. M. Rootes, H. Millman, P. G. Albert, A. Rivera, T. van Ommen, M. Curran, A. Moy, S. Rahmstorf, K. Kawamura, C.-D. Hillenbrand, M. E. Weber, C. J. Manning, J. Young, and A. Cooper. Early last interglacial ocean warming drove substantial ice mass loss from antarctica. <em>Proceedings of the National Academy of Sciences</em>, 117(8):3996–4006, 2020. <a href="https://doi.org/10.1073/pnas.1902469117">doi:10.1073/pnas.1902469117</a>.</li>
<li>Q. Yan, L. A. Owen, Z. Zhang, N. Jiang, and R. Zhang. Deciphering the evolution and forcing mechanisms of glaciation over the himalayan-tibetan orogen during the past 20,000 years. <em>Earth and Planetary Science Letters</em>, 2020. <a href="https://doi.org/10.1016/j.epsl.2020.116295">doi:10.1016/j.epsl.2020.116295</a>.</li>
<li>M. Zeitz, A. Levermann, and R. Winkelmann. Sensitivity of ice loss to uncertainty in flow law parameters in an idealized one-dimensional geometry. <em>The Cryosphere</em>, 14(10):3537–3550, 2020. <a href="https://doi.org/10.5194/tc-14-3537-2020">doi:10.5194/tc-14-3537-2020</a>.</li>
Expand Down
Loading

0 comments on commit f663569

Please sign in to comment.