-
Notifications
You must be signed in to change notification settings - Fork 10
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
update support for the following models:
- o1 - llama 3.2 - llava onevision - molmo - nvlm - phi 3.5 - pixtral - qwen2vl
- Loading branch information
Showing
9 changed files
with
479 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,34 @@ | ||
import requests | ||
import torch | ||
from PIL import Image | ||
from tqdm import tqdm | ||
from transformers import MllamaForConditionalGeneration, AutoProcessor | ||
|
||
def generate_response(queries, model_path): | ||
model = MllamaForConditionalGeneration.from_pretrained(model_path, | ||
torch_dtype=torch.bfloat16, | ||
device_map="auto") | ||
processor = AutoProcessor.from_pretrained(model_path) | ||
|
||
for k in tqdm(queries): | ||
query = queries[k]['question'] | ||
image = queries[k]["figure_path"] | ||
image = Image.open(image).convert('RGB') | ||
messages = [ | ||
{"role": "user", "content": [ | ||
{"type": "image"}, | ||
{"type": "text", "text": query} | ||
]} | ||
] | ||
input_text = processor.apply_chat_template(messages, add_generation_prompt=True) | ||
inputs = processor( | ||
image, | ||
input_text, | ||
add_special_tokens=False, | ||
return_tensors="pt" | ||
).to(model.device) | ||
|
||
output = model.generate(**inputs, max_new_tokens=1024) | ||
response = processor.decode(output[0]) | ||
response = response.split("<|start_header_id|>assistant<|end_header_id|>")[1].replace("<|eot_id|>", "").strip() | ||
queries[k]['response'] = response |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
# pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git | ||
from llava.model.builder import load_pretrained_model | ||
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token | ||
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX | ||
from llava.conversation import conv_templates, SeparatorStyle | ||
|
||
from PIL import Image | ||
import requests | ||
import copy | ||
import torch | ||
|
||
import sys | ||
import warnings | ||
from tqdm import tqdm | ||
|
||
warnings.filterwarnings("ignore") | ||
def generate_response(queries, model_path): | ||
model_name = "llava_qwen" | ||
device = "cuda" | ||
device_map = "auto" | ||
tokenizer, model, image_processor, max_length = load_pretrained_model(model_path, None, model_name, device_map=device_map) # Add any other thing you want to pass in llava_model_args | ||
|
||
model.eval() | ||
|
||
for k in tqdm(queries): | ||
query = queries[k]['question'] | ||
image = queries[k]["figure_path"] | ||
image = Image.open(image).convert('RGB') | ||
image_tensor = process_images([image], image_processor, model.config) | ||
image_tensor = [_image.to(dtype=torch.float16, device=device) for _image in image_tensor] | ||
|
||
conv_template = "qwen_1_5" # Make sure you use correct chat template for different models | ||
question = DEFAULT_IMAGE_TOKEN + "\n{}".format(query) | ||
conv = copy.deepcopy(conv_templates[conv_template]) | ||
conv.append_message(conv.roles[0], question) | ||
conv.append_message(conv.roles[1], None) | ||
prompt_question = conv.get_prompt() | ||
|
||
input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device) | ||
image_sizes = [image.size] | ||
cont = model.generate( | ||
input_ids, | ||
images=image_tensor, | ||
image_sizes=image_sizes, | ||
do_sample=False, | ||
temperature=0, | ||
max_new_tokens=4096, | ||
) | ||
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)[0] | ||
queries[k]['response'] = text_outputs |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,36 @@ | ||
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig | ||
from PIL import Image | ||
from tqdm import tqdm | ||
|
||
def generate_response(queries, model_path): | ||
processor = AutoProcessor.from_pretrained( | ||
model_path, | ||
trust_remote_code=True, | ||
torch_dtype='auto', | ||
device_map='auto' | ||
) | ||
model = AutoModelForCausalLM.from_pretrained( | ||
model_path, | ||
trust_remote_code=True, | ||
torch_dtype='auto', | ||
device_map='auto' | ||
) | ||
|
||
for k in tqdm(queries): | ||
query = queries[k]['question'] | ||
image = queries[k]["figure_path"] | ||
image = Image.open(image).convert('RGB') | ||
inputs = processor.process( | ||
images=[image], | ||
text=query | ||
) | ||
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()} | ||
output = model.generate_from_batch( | ||
inputs, | ||
GenerationConfig(max_new_tokens=1024, stop_strings="<|endoftext|>"), | ||
tokenizer=processor.tokenizer | ||
) | ||
generated_tokens = output[0,inputs['input_ids'].size(1):] | ||
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True) | ||
|
||
queries[k]['response'] = generated_text |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,132 @@ | ||
import torch | ||
from transformers import AutoTokenizer, AutoModel | ||
import math | ||
from PIL import Image | ||
import torchvision.transforms as T | ||
from torchvision.transforms.functional import InterpolationMode | ||
from tqdm import tqdm | ||
|
||
def split_model(): | ||
device_map = {} | ||
world_size = torch.cuda.device_count() | ||
num_layers = 80 | ||
# Since the first GPU will be used for ViT, treat it as half a GPU. | ||
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5)) | ||
num_layers_per_gpu = [num_layers_per_gpu] * world_size | ||
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5) | ||
layer_cnt = 0 | ||
for i, num_layer in enumerate(num_layers_per_gpu): | ||
for j in range(num_layer): | ||
device_map[f'language_model.model.layers.{layer_cnt}'] = i | ||
layer_cnt += 1 | ||
device_map['vision_model'] = 0 | ||
device_map['mlp1'] = 0 | ||
device_map['language_model.model.tok_embeddings'] = 0 | ||
device_map['language_model.model.embed_tokens'] = 0 | ||
device_map['language_model.output'] = 0 | ||
device_map['language_model.model.norm'] = 0 | ||
device_map['language_model.lm_head'] = 0 | ||
device_map['language_model.model.rotary_emb'] = 0 | ||
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0 | ||
|
||
return device_map | ||
|
||
|
||
IMAGENET_MEAN = (0.485, 0.456, 0.406) | ||
IMAGENET_STD = (0.229, 0.224, 0.225) | ||
|
||
|
||
def build_transform(input_size): | ||
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD | ||
transform = T.Compose([ | ||
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), | ||
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), | ||
T.ToTensor(), | ||
T.Normalize(mean=MEAN, std=STD) | ||
]) | ||
return transform | ||
|
||
|
||
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | ||
best_ratio_diff = float('inf') | ||
best_ratio = (1, 1) | ||
area = width * height | ||
for ratio in target_ratios: | ||
target_aspect_ratio = ratio[0] / ratio[1] | ||
ratio_diff = abs(aspect_ratio - target_aspect_ratio) | ||
if ratio_diff < best_ratio_diff: | ||
best_ratio_diff = ratio_diff | ||
best_ratio = ratio | ||
elif ratio_diff == best_ratio_diff: | ||
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | ||
best_ratio = ratio | ||
return best_ratio | ||
|
||
|
||
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): | ||
orig_width, orig_height = image.size | ||
aspect_ratio = orig_width / orig_height | ||
|
||
# calculate the existing image aspect ratio | ||
target_ratios = set( | ||
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if | ||
i * j <= max_num and i * j >= min_num) | ||
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | ||
|
||
# find the closest aspect ratio to the target | ||
target_aspect_ratio = find_closest_aspect_ratio( | ||
aspect_ratio, target_ratios, orig_width, orig_height, image_size) | ||
|
||
# calculate the target width and height | ||
target_width = image_size * target_aspect_ratio[0] | ||
target_height = image_size * target_aspect_ratio[1] | ||
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | ||
|
||
# resize the image | ||
resized_img = image.resize((target_width, target_height)) | ||
processed_images = [] | ||
for i in range(blocks): | ||
box = ( | ||
(i % (target_width // image_size)) * image_size, | ||
(i // (target_width // image_size)) * image_size, | ||
((i % (target_width // image_size)) + 1) * image_size, | ||
((i // (target_width // image_size)) + 1) * image_size | ||
) | ||
# split the image | ||
split_img = resized_img.crop(box) | ||
processed_images.append(split_img) | ||
assert len(processed_images) == blocks | ||
if use_thumbnail and len(processed_images) != 1: | ||
thumbnail_img = image.resize((image_size, image_size)) | ||
processed_images.append(thumbnail_img) | ||
return processed_images | ||
|
||
|
||
def load_image(image_file, input_size=448, max_num=12): | ||
image = Image.open(image_file).convert('RGB') | ||
transform = build_transform(input_size=input_size) | ||
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) | ||
pixel_values = [transform(image) for image in images] | ||
pixel_values = torch.stack(pixel_values) | ||
return pixel_values | ||
|
||
|
||
def generate_response(queries, model_path): | ||
device_map = split_model() | ||
model = AutoModel.from_pretrained( | ||
model_path, | ||
torch_dtype=torch.bfloat16, | ||
low_cpu_mem_usage=True, | ||
use_flash_attn=False, | ||
trust_remote_code=True, | ||
device_map=device_map).eval() | ||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False) | ||
generation_config = dict(max_new_tokens=1024, do_sample=False) | ||
|
||
for k in tqdm(queries): | ||
query = queries[k]['question'] | ||
image = queries[k]["figure_path"] | ||
query = f'<image>\n{query}' | ||
pixel_values = load_image(image, max_num=12).to(torch.bfloat16) | ||
response = model.chat(tokenizer, pixel_values, query, generation_config) | ||
queries[k]['response'] = response |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
import base64 | ||
import requests | ||
|
||
def get_client_model(model_path, api_key): | ||
assert api_key is not None, "API key is required for using GPT" | ||
assert model_path is not None, "Model name is required for using GPT" | ||
model = model_path | ||
client = None | ||
return client, model | ||
|
||
def generate_response(image_path, query, model, media_type="image/jpeg", api_key=None, client=None, random_baseline=False): | ||
def encode_image(image_path): | ||
with open(image_path, "rb") as image_file: | ||
return base64.b64encode(image_file.read()).decode('utf-8') | ||
|
||
# Getting the base64 string | ||
base64_image = encode_image(image_path) | ||
|
||
headers = { | ||
"Content-Type": "application/json", | ||
"Authorization": f"Bearer {api_key}" | ||
} | ||
if not random_baseline: | ||
payload = { | ||
"model": model, | ||
"messages": [ | ||
{ | ||
"role": "user", | ||
"content": [ | ||
{ | ||
"type": "text", | ||
"text": query | ||
}, | ||
{ | ||
"type": "image_url", | ||
"image_url": { | ||
"url": f"data:image/jpeg;base64,{base64_image}" | ||
} | ||
} | ||
] | ||
} | ||
], | ||
"temperature": 1.0, | ||
"top_p": 1.0, | ||
"seed": 42 | ||
} | ||
else: | ||
payload = { | ||
"model": model, | ||
"messages": [ | ||
{ | ||
"role": "user", | ||
"content": [ | ||
{ | ||
"type": "text", | ||
"text": query | ||
} | ||
] | ||
} | ||
], | ||
"temperature": 1.0, | ||
"top_p": 1.0, | ||
"seed": 42 | ||
} | ||
|
||
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload) | ||
response = response.json() | ||
return response['choices'][0]['message']['content'] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,41 @@ | ||
from PIL import Image | ||
import requests | ||
from transformers import AutoModelForCausalLM | ||
from transformers import AutoProcessor | ||
from tqdm import tqdm | ||
|
||
def generate_response(queries, model_path): | ||
model = AutoModelForCausalLM.from_pretrained(model_path, | ||
device_map="cuda", | ||
trust_remote_code=True, | ||
torch_dtype="auto", | ||
_attn_implementation='flash_attention_2') | ||
processor = AutoProcessor.from_pretrained(model_path, | ||
trust_remote_code=True, | ||
num_crops=16) | ||
for k in tqdm(queries): | ||
query = queries[k]['question'] | ||
image = queries[k]["figure_path"] | ||
image = Image.open(image).convert('RGB') | ||
images = [image] | ||
query = f"<|image_1|>\n{query}" | ||
messages = [ | ||
{"role": "user", "content": query} | ||
] | ||
prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | ||
inputs = processor(prompt, images, return_tensors="pt").to("cuda:0") | ||
generation_args = { | ||
"max_new_tokens": 1000, | ||
"temperature": 0.0, | ||
"do_sample": False | ||
} | ||
generate_ids = model.generate(**inputs, | ||
eos_token_id=processor.tokenizer.eos_token_id, | ||
**generation_args) | ||
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:] | ||
response = processor.batch_decode(generate_ids, | ||
skip_special_tokens=True, | ||
clean_up_tokenization_spaces=False)[0] | ||
print(response) | ||
queries[k]['response'] = response | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
from mistral_inference.transformer import Transformer | ||
from mistral_inference.generate import generate | ||
|
||
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer | ||
from mistral_common.protocol.instruct.messages import UserMessage, TextChunk, ImageURLChunk, ImageChunk | ||
from mistral_common.protocol.instruct.request import ChatCompletionRequest | ||
|
||
from PIL import Image | ||
from tqdm import tqdm | ||
|
||
def generate_response(queries, model_path): | ||
tokenizer = MistralTokenizer.from_file(f"{model_path}/tekken.json") | ||
model = Transformer.from_folder(model_path) | ||
for k in tqdm(queries): | ||
query = queries[k]['question'] | ||
image = queries[k]["figure_path"] | ||
image = Image.open(image).convert('RGB') | ||
completion_request = ChatCompletionRequest(messages=[UserMessage(content=[ImageChunk(image=image), TextChunk(text=query)])]) | ||
encoded = tokenizer.encode_chat_completion(completion_request) | ||
images = encoded.images | ||
tokens = encoded.tokens | ||
out_tokens, _ = generate([tokens], model, images=[images], max_tokens=1024, temperature=0., eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id) | ||
response = tokenizer.decode(out_tokens[0]) | ||
queries[k]['response'] = response |
Oops, something went wrong.