Skip to content

Commit

Permalink
update support for the following models:
Browse files Browse the repository at this point in the history
- o1
- llama 3.2
- llava onevision
- molmo
- nvlm
- phi 3.5
- pixtral
- qwen2vl
  • Loading branch information
zwcolin committed Dec 24, 2024
1 parent 63ee484 commit e832f28
Show file tree
Hide file tree
Showing 9 changed files with 479 additions and 0 deletions.
34 changes: 34 additions & 0 deletions src/generate_lib/llama32.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
import requests
import torch
from PIL import Image
from tqdm import tqdm
from transformers import MllamaForConditionalGeneration, AutoProcessor

def generate_response(queries, model_path):
model = MllamaForConditionalGeneration.from_pretrained(model_path,
torch_dtype=torch.bfloat16,
device_map="auto")
processor = AutoProcessor.from_pretrained(model_path)

for k in tqdm(queries):
query = queries[k]['question']
image = queries[k]["figure_path"]
image = Image.open(image).convert('RGB')
messages = [
{"role": "user", "content": [
{"type": "image"},
{"type": "text", "text": query}
]}
]
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(
image,
input_text,
add_special_tokens=False,
return_tensors="pt"
).to(model.device)

output = model.generate(**inputs, max_new_tokens=1024)
response = processor.decode(output[0])
response = response.split("<|start_header_id|>assistant<|end_header_id|>")[1].replace("<|eot_id|>", "").strip()
queries[k]['response'] = response
50 changes: 50 additions & 0 deletions src/generate_lib/llavaov.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
# pip install git+https://github.com/LLaVA-VL/LLaVA-NeXT.git
from llava.model.builder import load_pretrained_model
from llava.mm_utils import get_model_name_from_path, process_images, tokenizer_image_token
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IGNORE_INDEX
from llava.conversation import conv_templates, SeparatorStyle

from PIL import Image
import requests
import copy
import torch

import sys
import warnings
from tqdm import tqdm

warnings.filterwarnings("ignore")
def generate_response(queries, model_path):
model_name = "llava_qwen"
device = "cuda"
device_map = "auto"
tokenizer, model, image_processor, max_length = load_pretrained_model(model_path, None, model_name, device_map=device_map) # Add any other thing you want to pass in llava_model_args

model.eval()

for k in tqdm(queries):
query = queries[k]['question']
image = queries[k]["figure_path"]
image = Image.open(image).convert('RGB')
image_tensor = process_images([image], image_processor, model.config)
image_tensor = [_image.to(dtype=torch.float16, device=device) for _image in image_tensor]

conv_template = "qwen_1_5" # Make sure you use correct chat template for different models
question = DEFAULT_IMAGE_TOKEN + "\n{}".format(query)
conv = copy.deepcopy(conv_templates[conv_template])
conv.append_message(conv.roles[0], question)
conv.append_message(conv.roles[1], None)
prompt_question = conv.get_prompt()

input_ids = tokenizer_image_token(prompt_question, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).to(device)
image_sizes = [image.size]
cont = model.generate(
input_ids,
images=image_tensor,
image_sizes=image_sizes,
do_sample=False,
temperature=0,
max_new_tokens=4096,
)
text_outputs = tokenizer.batch_decode(cont, skip_special_tokens=True)[0]
queries[k]['response'] = text_outputs
36 changes: 36 additions & 0 deletions src/generate_lib/molmo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,36 @@
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig
from PIL import Image
from tqdm import tqdm

def generate_response(queries, model_path):
processor = AutoProcessor.from_pretrained(
model_path,
trust_remote_code=True,
torch_dtype='auto',
device_map='auto'
)
model = AutoModelForCausalLM.from_pretrained(
model_path,
trust_remote_code=True,
torch_dtype='auto',
device_map='auto'
)

for k in tqdm(queries):
query = queries[k]['question']
image = queries[k]["figure_path"]
image = Image.open(image).convert('RGB')
inputs = processor.process(
images=[image],
text=query
)
inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()}
output = model.generate_from_batch(
inputs,
GenerationConfig(max_new_tokens=1024, stop_strings="<|endoftext|>"),
tokenizer=processor.tokenizer
)
generated_tokens = output[0,inputs['input_ids'].size(1):]
generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)

queries[k]['response'] = generated_text
132 changes: 132 additions & 0 deletions src/generate_lib/nvlm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,132 @@
import torch
from transformers import AutoTokenizer, AutoModel
import math
from PIL import Image
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode
from tqdm import tqdm

def split_model():
device_map = {}
world_size = torch.cuda.device_count()
num_layers = 80
# Since the first GPU will be used for ViT, treat it as half a GPU.
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
num_layers_per_gpu = [num_layers_per_gpu] * world_size
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
layer_cnt = 0
for i, num_layer in enumerate(num_layers_per_gpu):
for j in range(num_layer):
device_map[f'language_model.model.layers.{layer_cnt}'] = i
layer_cnt += 1
device_map['vision_model'] = 0
device_map['mlp1'] = 0
device_map['language_model.model.tok_embeddings'] = 0
device_map['language_model.model.embed_tokens'] = 0
device_map['language_model.output'] = 0
device_map['language_model.model.norm'] = 0
device_map['language_model.lm_head'] = 0
device_map['language_model.model.rotary_emb'] = 0
device_map[f'language_model.model.layers.{num_layers - 1}'] = 0

return device_map


IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)


def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform


def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio


def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height

# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)

# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images


def load_image(image_file, input_size=448, max_num=12):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values


def generate_response(queries, model_path):
device_map = split_model()
model = AutoModel.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=False,
trust_remote_code=True,
device_map=device_map).eval()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False)
generation_config = dict(max_new_tokens=1024, do_sample=False)

for k in tqdm(queries):
query = queries[k]['question']
image = queries[k]["figure_path"]
query = f'<image>\n{query}'
pixel_values = load_image(image, max_num=12).to(torch.bfloat16)
response = model.chat(tokenizer, pixel_values, query, generation_config)
queries[k]['response'] = response
68 changes: 68 additions & 0 deletions src/generate_lib/o1.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
import base64
import requests

def get_client_model(model_path, api_key):
assert api_key is not None, "API key is required for using GPT"
assert model_path is not None, "Model name is required for using GPT"
model = model_path
client = None
return client, model

def generate_response(image_path, query, model, media_type="image/jpeg", api_key=None, client=None, random_baseline=False):
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')

# Getting the base64 string
base64_image = encode_image(image_path)

headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
if not random_baseline:
payload = {
"model": model,
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": query
},
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{base64_image}"
}
}
]
}
],
"temperature": 1.0,
"top_p": 1.0,
"seed": 42
}
else:
payload = {
"model": model,
"messages": [
{
"role": "user",
"content": [
{
"type": "text",
"text": query
}
]
}
],
"temperature": 1.0,
"top_p": 1.0,
"seed": 42
}

response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
response = response.json()
return response['choices'][0]['message']['content']
41 changes: 41 additions & 0 deletions src/generate_lib/phi35.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
from PIL import Image
import requests
from transformers import AutoModelForCausalLM
from transformers import AutoProcessor
from tqdm import tqdm

def generate_response(queries, model_path):
model = AutoModelForCausalLM.from_pretrained(model_path,
device_map="cuda",
trust_remote_code=True,
torch_dtype="auto",
_attn_implementation='flash_attention_2')
processor = AutoProcessor.from_pretrained(model_path,
trust_remote_code=True,
num_crops=16)
for k in tqdm(queries):
query = queries[k]['question']
image = queries[k]["figure_path"]
image = Image.open(image).convert('RGB')
images = [image]
query = f"<|image_1|>\n{query}"
messages = [
{"role": "user", "content": query}
]
prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(prompt, images, return_tensors="pt").to("cuda:0")
generation_args = {
"max_new_tokens": 1000,
"temperature": 0.0,
"do_sample": False
}
generate_ids = model.generate(**inputs,
eos_token_id=processor.tokenizer.eos_token_id,
**generation_args)
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
response = processor.batch_decode(generate_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=False)[0]
print(response)
queries[k]['response'] = response

24 changes: 24 additions & 0 deletions src/generate_lib/pixtral.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
from mistral_inference.transformer import Transformer
from mistral_inference.generate import generate

from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage, TextChunk, ImageURLChunk, ImageChunk
from mistral_common.protocol.instruct.request import ChatCompletionRequest

from PIL import Image
from tqdm import tqdm

def generate_response(queries, model_path):
tokenizer = MistralTokenizer.from_file(f"{model_path}/tekken.json")
model = Transformer.from_folder(model_path)
for k in tqdm(queries):
query = queries[k]['question']
image = queries[k]["figure_path"]
image = Image.open(image).convert('RGB')
completion_request = ChatCompletionRequest(messages=[UserMessage(content=[ImageChunk(image=image), TextChunk(text=query)])])
encoded = tokenizer.encode_chat_completion(completion_request)
images = encoded.images
tokens = encoded.tokens
out_tokens, _ = generate([tokens], model, images=[images], max_tokens=1024, temperature=0., eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
response = tokenizer.decode(out_tokens[0])
queries[k]['response'] = response
Loading

0 comments on commit e832f28

Please sign in to comment.