Skip to content

Commit

Permalink
executorch/exir/program/test (#7397)
Browse files Browse the repository at this point in the history
Summary: Pull Request resolved: #7397

Reviewed By: avikchaudhuri

Differential Revision: D67383235
  • Loading branch information
gmagogsfm authored and facebook-github-bot committed Dec 19, 2024
1 parent b0bf9aa commit 6ab2084
Show file tree
Hide file tree
Showing 35 changed files with 233 additions and 279 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ def main() -> None:
torch.randn((1, embedding_dim)),
torch.tensor([0]),
)
exported_model = export(model, example_inputs)
exported_model = export(model, example_inputs, strict=True)
edge_program_manager = exir.to_edge(exported_model)
compile_specs = CoreMLBackend.generate_compile_specs(
compute_precision=ct.precision.FLOAT16,
Expand Down
2 changes: 1 addition & 1 deletion devtools/backend_debug/tests/test_delegation_info.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ def forward(self, a, x, b):

m = Model()
inputs = (torch.randn(2, 2), torch.randn(2, 2), torch.randn(2, 2))
edge = to_edge(torch.export.export(m, inputs)).to_backend(
edge = to_edge(torch.export.export(m, inputs, strict=True)).to_backend(
AddMulPartitionerDemo()
)
delegation_info = get_delegation_info(edge.exported_program().graph_module)
Expand Down
1 change: 1 addition & 0 deletions devtools/bundled_program/util/test_util.py
Original file line number Diff line number Diff line change
Expand Up @@ -271,6 +271,7 @@ def get_common_executorch_program() -> (
m_name: export(
StatefulWrapperModule(eager_model, getattr(eager_model, m_name)),
capture_inputs[m_name],
strict=True,
)
for m_name in eager_model.method_names
}
Expand Down
2 changes: 1 addition & 1 deletion devtools/etrecord/tests/etrecord_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,7 @@ def get_test_model_with_bundled_program(self):

def get_test_model_with_manager(self):
f = models.BasicSinMax()
aten_dialect = export(f, f.get_random_inputs())
aten_dialect = export(f, f.get_random_inputs(), strict=True)
edge_program: EdgeProgramManager = to_edge(
aten_dialect, compile_config=EdgeCompileConfig(_check_ir_validity=False)
)
Expand Down
7 changes: 2 additions & 5 deletions docs/source/tutorials_source/devtools-integration-tutorial.py
Original file line number Diff line number Diff line change
Expand Up @@ -89,10 +89,7 @@ def forward(self, x):

model = Net()

aten_model: ExportedProgram = export(
model,
(torch.randn(1, 1, 32, 32),),
)
aten_model: ExportedProgram = export(model, (torch.randn(1, 1, 32, 32),), strict=True)

edge_program_manager: EdgeProgramManager = to_edge(
aten_model, compile_config=EdgeCompileConfig(_check_ir_validity=True)
Expand Down Expand Up @@ -141,7 +138,7 @@ def forward(self, x):

# Step 1: ExecuTorch Program Export
m_name = "forward"
method_graphs = {m_name: export(model, (torch.randn(1, 1, 32, 32),))}
method_graphs = {m_name: export(model, (torch.randn(1, 1, 32, 32),), strict=True)}

# Step 2: Construct Method Test Suites
inputs = [[torch.randn(1, 1, 32, 32)] for _ in range(2)]
Expand Down
28 changes: 15 additions & 13 deletions docs/source/tutorials_source/export-to-executorch-tutorial.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,7 +66,7 @@ def forward(self, x: torch.Tensor) -> torch.Tensor:


example_args = (torch.randn(1, 3, 256, 256),)
aten_dialect: ExportedProgram = export(SimpleConv(), example_args)
aten_dialect: ExportedProgram = export(SimpleConv(), example_args, strict=True)
print(aten_dialect)

######################################################################
Expand Down Expand Up @@ -101,7 +101,7 @@ def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:


example_args = (torch.randn(3, 3), torch.randn(3, 3))
aten_dialect: ExportedProgram = export(Basic(), example_args)
aten_dialect: ExportedProgram = export(Basic(), example_args, strict=True)

# Works correctly
print(aten_dialect.module()(torch.ones(3, 3), torch.ones(3, 3)))
Expand Down Expand Up @@ -131,7 +131,7 @@ def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
dim1_x = Dim("dim1_x", min=1, max=10)
dynamic_shapes = {"x": {1: dim1_x}, "y": {1: dim1_x}}
aten_dialect: ExportedProgram = export(
Basic(), example_args, dynamic_shapes=dynamic_shapes
Basic(), example_args, dynamic_shapes=dynamic_shapes, strict=True
)
print(aten_dialect)

Expand Down Expand Up @@ -213,7 +213,7 @@ def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
print("Quantized Graph")
print(converted_graph)

aten_dialect: ExportedProgram = export(converted_graph, example_args)
aten_dialect: ExportedProgram = export(converted_graph, example_args, strict=True)
print("ATen Dialect Graph")
print(aten_dialect)

Expand Down Expand Up @@ -243,7 +243,7 @@ def forward(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
from executorch.exir import EdgeProgramManager, to_edge

example_args = (torch.randn(1, 3, 256, 256),)
aten_dialect: ExportedProgram = export(SimpleConv(), example_args)
aten_dialect: ExportedProgram = export(SimpleConv(), example_args, strict=True)

edge_program: EdgeProgramManager = to_edge(aten_dialect)
print("Edge Dialect Graph")
Expand All @@ -267,10 +267,10 @@ def forward(self, x):


encode_args = (torch.randn(1, 10),)
aten_encode: ExportedProgram = export(Encode(), encode_args)
aten_encode: ExportedProgram = export(Encode(), encode_args, strict=True)

decode_args = (torch.randn(1, 5),)
aten_decode: ExportedProgram = export(Decode(), decode_args)
aten_decode: ExportedProgram = export(Decode(), decode_args, strict=True)

edge_program: EdgeProgramManager = to_edge(
{"encode": aten_encode, "decode": aten_decode}
Expand All @@ -291,7 +291,7 @@ def forward(self, x):
# rather than the ``torch.ops.aten`` namespace.

example_args = (torch.randn(1, 3, 256, 256),)
aten_dialect: ExportedProgram = export(SimpleConv(), example_args)
aten_dialect: ExportedProgram = export(SimpleConv(), example_args, strict=True)
edge_program: EdgeProgramManager = to_edge(aten_dialect)
print("Edge Dialect Graph")
print(edge_program.exported_program())
Expand Down Expand Up @@ -357,7 +357,7 @@ def forward(self, x):

# Export and lower the module to Edge Dialect
example_args = (torch.ones(1),)
aten_dialect: ExportedProgram = export(LowerableModule(), example_args)
aten_dialect: ExportedProgram = export(LowerableModule(), example_args, strict=True)
edge_program: EdgeProgramManager = to_edge(aten_dialect)
to_be_lowered_module = edge_program.exported_program()

Expand Down Expand Up @@ -423,7 +423,7 @@ def forward(self, x):


example_args = (torch.ones(1),)
aten_dialect: ExportedProgram = export(ComposedModule(), example_args)
aten_dialect: ExportedProgram = export(ComposedModule(), example_args, strict=True)
edge_program: EdgeProgramManager = to_edge(aten_dialect)
exported_program = edge_program.exported_program()
print("Edge Dialect graph")
Expand Down Expand Up @@ -461,7 +461,7 @@ def forward(self, a, x, b):


example_args = (torch.randn(2, 2), torch.randn(2, 2), torch.randn(2, 2))
aten_dialect: ExportedProgram = export(Foo(), example_args)
aten_dialect: ExportedProgram = export(Foo(), example_args, strict=True)
edge_program: EdgeProgramManager = to_edge(aten_dialect)
exported_program = edge_program.exported_program()
print("Edge Dialect graph")
Expand Down Expand Up @@ -495,7 +495,7 @@ def forward(self, a, x, b):


example_args = (torch.randn(2, 2), torch.randn(2, 2), torch.randn(2, 2))
aten_dialect: ExportedProgram = export(Foo(), example_args)
aten_dialect: ExportedProgram = export(Foo(), example_args, strict=True)
edge_program: EdgeProgramManager = to_edge(aten_dialect)
exported_program = edge_program.exported_program()
delegated_program = edge_program.to_backend(AddMulPartitionerDemo())
Expand Down Expand Up @@ -577,7 +577,9 @@ def forward(self, x):
pre_autograd_aten_dialect = export_for_training(M(), example_args).module()
# Optionally do quantization:
# pre_autograd_aten_dialect = convert_pt2e(prepare_pt2e(pre_autograd_aten_dialect, CustomBackendQuantizer))
aten_dialect: ExportedProgram = export(pre_autograd_aten_dialect, example_args)
aten_dialect: ExportedProgram = export(
pre_autograd_aten_dialect, example_args, strict=True
)
edge_program: exir.EdgeProgramManager = exir.to_edge(aten_dialect)
# Optionally do delegation:
# edge_program = edge_program.to_backend(CustomBackendPartitioner)
Expand Down
9 changes: 6 additions & 3 deletions examples/apple/coreml/scripts/export.py
Original file line number Diff line number Diff line change
Expand Up @@ -88,7 +88,9 @@ def partition_module_to_coreml(module):

def lower_module_to_coreml(module, compile_specs, example_inputs):
module = module.eval()
edge = to_edge(export(module, example_inputs), compile_config=_EDGE_COMPILE_CONFIG)
edge = to_edge(
export(module, example_inputs, strict=True), compile_config=_EDGE_COMPILE_CONFIG
)
# All of the subsequent calls on the edge_dialect_graph generated above (such as delegation or
# to_executorch()) are done in place and the graph is also modified in place. For debugging purposes
# we would like to keep a copy of the original edge dialect graph and hence we create a deepcopy of
Expand All @@ -107,7 +109,8 @@ def lower_module_to_coreml(module, compile_specs, example_inputs):
def export_lowered_module_to_executorch_program(lowered_module, example_inputs):
lowered_module(*example_inputs)
exec_prog = to_edge(
export(lowered_module, example_inputs), compile_config=_EDGE_COMPILE_CONFIG
export(lowered_module, example_inputs, strict=True),
compile_config=_EDGE_COMPILE_CONFIG,
).to_executorch(config=exir.ExecutorchBackendConfig(extract_delegate_segments=True))

return exec_prog
Expand Down Expand Up @@ -170,7 +173,7 @@ def main():

if args.use_partitioner:
model.eval()
exir_program_aten = torch.export.export(model, example_inputs)
exir_program_aten = torch.export.export(model, example_inputs, strict=True)

edge_program_manager = exir.to_edge(exir_program_aten)
edge_copy = copy.deepcopy(edge_program_manager)
Expand Down
9 changes: 2 additions & 7 deletions examples/apple/coreml/scripts/inspector_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,9 +65,7 @@ def build_devtools_runner_including_coreml(
build_devtools_runner_command: str = (
"./examples/devtools/build_example_runner.sh --coreml"
)
build_command: str = (
f"{cd_root_command} && {conda_activate_env_command} && {build_devtools_runner_command}"
)
build_command: str = f"{cd_root_command} && {conda_activate_env_command} && {build_devtools_runner_command}"
subprocess.run(
f'bash -c "{build_command}"', shell=True, check=True
).check_returncode()
Expand All @@ -87,10 +85,7 @@ def to_core_aten(
module: torch.nn.Module,
example_inputs: Tuple[Value, ...],
) -> ExportedProgram:
core_aten_program = export(
mod=module,
args=example_inputs,
)
core_aten_program = export(mod=module, args=example_inputs, strict=True)
return core_aten_program


Expand Down
5 changes: 1 addition & 4 deletions examples/devtools/scripts/gen_sample_etrecord.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,10 +31,7 @@

def gen_etrecord(model: torch.nn.Module, inputs: Any, output_path=None):
f = model
aten_dialect: ExportedProgram = export(
f,
inputs,
)
aten_dialect: ExportedProgram = export(f, inputs, strict=True)
edge_program: EdgeProgramManager = to_edge(
aten_dialect, compile_config=EdgeCompileConfig(_check_ir_validity=True)
)
Expand Down
2 changes: 1 addition & 1 deletion examples/llm_manual/export_nanogpt.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@
m = export_for_training(
model, example_inputs, dynamic_shapes=dynamic_shape
).module()
traced_model = export(m, example_inputs, dynamic_shapes=dynamic_shape)
traced_model = export(m, example_inputs, dynamic_shapes=dynamic_shape, strict=True)

# Convert the model into a runnable ExecuTorch program.
# To be further lowered to Xnnpack backend, `traced_model` needs xnnpack-specific edge compile config
Expand Down
4 changes: 2 additions & 2 deletions examples/mediatek/aot_utils/oss_utils/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,9 +37,9 @@ def build_executorch_binary(
for data in dataset:
annotated_model(*data)
quantized_model = convert_pt2e(annotated_model, fold_quantize=False)
aten_dialect = torch.export.export(quantized_model, inputs)
aten_dialect = torch.export.export(quantized_model, inputs, strict=True)
else:
aten_dialect = torch.export.export(model, inputs)
aten_dialect = torch.export.export(model, inputs, strict=True)

from executorch.exir.program._program import to_edge_transform_and_lower

Expand Down
2 changes: 1 addition & 1 deletion examples/mediatek/model_export_scripts/llama.py
Original file line number Diff line number Diff line change
Expand Up @@ -338,7 +338,7 @@ def export_to_et_ir(
print(f"Exporting Shape {shape} to:\n{dest_path}")
example_inputs = model.get_example_inputs(*ntok_and_cache)
aten_dialect: exir.ExportedProgram = torch.export.export(
converted_graph, example_inputs
converted_graph, example_inputs, strict=True
)

print("Lowering to Edge Dialect Graph")
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -70,6 +70,7 @@ def test_llama3_2_text_decoder_aoti(self) -> None:
model.get_example_inputs(),
kwargs=model.get_example_kwarg_inputs(),
dynamic_shapes=model.get_dynamic_shapes(),
strict=True,
)
with tempfile.TemporaryDirectory() as tmpdir:
path = torch._inductor.aoti_compile_and_package(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@ def test_flamingo_vision_encoder(self) -> None:
encoder,
model.get_example_inputs(),
dynamic_shapes=model.get_dynamic_shapes(),
strict=True,
)
with tempfile.TemporaryDirectory() as tmpdir:
path = torch._inductor.aoti_compile_and_package(
Expand Down
7 changes: 6 additions & 1 deletion examples/models/llava/export_llava.py
Original file line number Diff line number Diff line change
Expand Up @@ -116,6 +116,7 @@ def forward(self, input_pos, embeddings):
manager.pre_autograd_graph_module,
manager.example_inputs,
dynamic_shapes=manager._get_dynamic_shape(),
strict=True,
)
return text_model_ep

Expand Down Expand Up @@ -158,6 +159,7 @@ def forward(self, images):
manager.pre_autograd_graph_module,
manager.example_inputs,
dynamic_shapes=manager.dynamic_shapes,
strict=True,
)
return image_encoder_ep

Expand All @@ -176,7 +178,10 @@ def quant_embedding(model):
dynamic_shapes = [{1: token_dim_1}]
with torch.no_grad():
token_embedding_ep = torch.export.export(
quantized_token_embed.embed_tokens, (prompt,), dynamic_shapes=dynamic_shapes
quantized_token_embed.embed_tokens,
(prompt,),
dynamic_shapes=dynamic_shapes,
strict=True,
)
return token_embedding_ep

Expand Down
4 changes: 2 additions & 2 deletions examples/models/phi-3-mini-lora/export_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ def export_phi3_mini_lora(model) -> None:
tokens = randint(0, vocab_size, (batch_size, seq_len), dtype=long)
example_args = (tokens,)
with sdpa_kernel([SDPBackend.MATH]):
aten_dialect: ExportedProgram = export(model, example_args)
aten_dialect: ExportedProgram = export(model, example_args, strict=True)

# 2. to_edge: Make optimizations for Edge devices.
print("Lowering to edge dialect")
Expand Down Expand Up @@ -93,7 +93,7 @@ def export_phi3_mini_lora_training(model) -> None:
labels = tokens
example_args = (tokens, labels)
with sdpa_kernel([SDPBackend.MATH]):
exported_graph: ExportedProgram = export(model, example_args)
exported_graph: ExportedProgram = export(model, example_args, strict=True)
print("Creating a joint forward-backwards graph for training")
joint_graph = _export_forward_backward(exported_graph)

Expand Down
3 changes: 1 addition & 2 deletions examples/qualcomm/oss_scripts/llama2/llama.py
Original file line number Diff line number Diff line change
Expand Up @@ -108,7 +108,6 @@ def annotate_cat(node: Node, quantization_config: QuantizationConfig):
def annotate_single_in_single_out(
node: Node, quantization_config: QuantizationConfig
) -> None:

input_qspec_map = {}
input_act = node.args[0]
input_qspec_map[input_act] = quantization_config.input_activation
Expand Down Expand Up @@ -356,7 +355,7 @@ def quantize(self, quant_dtype, custom_annotations=()):

with torch.no_grad():
fx_graph_module = torch.export.export(
self.llama_model, self.inputs
self.llama_model, self.inputs, strict=True
).module()
fx_graph_module = prepare_pt2e(fx_graph_module, quantizer)
print("Quantizing the model...")
Expand Down
2 changes: 1 addition & 1 deletion examples/qualcomm/oss_scripts/llama3_2/llama.py
Original file line number Diff line number Diff line change
Expand Up @@ -236,7 +236,7 @@ def quantize(self, quant_dtype, args, custom_annotations=()):

with torch.no_grad():
fx_graph_module = torch.export.export(
self.llama_model, self.inputs
self.llama_model, self.inputs, strict=True
).module()
fx_graph_module = prepare_pt2e(fx_graph_module, quantizer)
logging.info("Quantizing the model...")
Expand Down
2 changes: 1 addition & 1 deletion examples/qualcomm/scripts/export_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@ def main() -> None:
quantizer = QnnQuantizer()

# Typical pytorch 2.0 quantization flow
m = torch.export.export(model.eval(), example_inputs).module()
m = torch.export.export(model.eval(), example_inputs, strict=True).module()
m = prepare_pt2e(m, quantizer)
# Calibration
m(*example_inputs)
Expand Down
2 changes: 1 addition & 1 deletion examples/qualcomm/scripts/mobilebert_fine_tune.py
Original file line number Diff line number Diff line change
Expand Up @@ -292,7 +292,7 @@ def calibrator(gm):
)
# lower all graph again, the skipped operators will be left in CPU
exec_prog = to_edge(
torch.export.export(graph_module, inputs[0]),
torch.export.export(graph_module, inputs[0], strict=True),
).to_executorch()

with open(f"{args.artifact}/{pte_filename}.pte", "wb") as file:
Expand Down
2 changes: 1 addition & 1 deletion examples/qualcomm/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -281,7 +281,7 @@ def build_executorch_binary(
None: The function writes the output to a specified .pte file.
"""
if quant_dtype is not None:
captured_model = torch.export.export(model, inputs).module()
captured_model = torch.export.export(model, inputs, strict=True).module()
if qat_training_data:
quantizer = custom_quantizer or make_quantizer(
quant_dtype=quant_dtype, is_qat=True
Expand Down
Loading

0 comments on commit 6ab2084

Please sign in to comment.