Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feature/add torchserve detectron2 #3355

Open
wants to merge 9 commits into
base: master
Choose a base branch
from
67 changes: 67 additions & 0 deletions examples/object_detector/detectron2/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
# Object Detection using TorchServe and Detectron2

## Overview

This folder leverages **TorchServe** to deploy a Detectron2-based object detection model using a custom handler. It provides scalable and efficient object detection capabilities with support for both CPU and GPU environments.

---

## Table of Contents

1. [Pre-requirements](#pre-requirements)
2. [Installation](#installation)
3. [Usage](#usage)
4. [Documentation](#documentation)
5. [Contributors](#contributors)

---

## Pre-requirements

- **Python 3.8 or higher** (tested on Python 3.10.15).

---

## Installation

Follow these steps to set up the project:

1. Clone the repository:

```bash
git clone https://github.com/pytorch/serve.git
```

2. Make sure the terminal's current directory is set to the folder where this README file is located:

```bash
cd serve/examples/object_detector/detectron2
```

3. Install dependencies:

```bash
pip install -r requirements.txt
pip install git+https://github.com/facebookresearch/detectron2.git && pip install numpy==1.21.6
```

---

## Usage
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please take a look at other examples and show all the steps in this README. Anyone should be able to replicate the example looking at just the README.

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Thank you for the guidance! I’ve now updated the README file.


Refer to the [Documentation](#documentation) for detailed usage instructions.

---

## Documentation

For detailed information on using TorchServe and Detectron2 for object detection, refer to the documentation provided in the [Upstart Commerce Blog](https://upstartcommerce.com/optimizing-pytorch-model-serving-at-scale-with-torchserve/).

---

## Contributors
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please remove this section


- **[Muhammad Mudassar](https://github.com/Mudassar-MLE)**
- [LinkedIn](https://www.linkedin.com/in/muhammad-mudassar-a65645192/)
- [Email](mailto:[email protected])
---
265 changes: 265 additions & 0 deletions examples/object_detector/detectron2/detectron2-handler.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,265 @@
import io
import json
import time
import torch
import logging
import numpy as np
from os import path
from detectron2.config import get_cfg
from PIL import Image, UnidentifiedImageError
from detectron2.engine import DefaultPredictor
from detectron2.utils.logger import setup_logger
try:
import pillow_heif
import pillow_avif
import pillow_jxl
# Register openers for extended formats
pillow_heif.register_heif_opener()
# For pillow_avif and pillow_jxl, openers are registered upon import
except ImportError as e:
raise ImportError(
"Please install 'pillow-heif', 'pillow-avif', and 'pillow-jxl' to handle extended image formats. "
f"Missing package error: {e}"
)
########################################################################################################################################
setup_logger()
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
########################################################################################################################################
class ModelHandler:
"""
A base ModelHandler implementation for loading and running Detectron2 models with TorchServe.
Compatible with both CPU and GPU.
"""
def __init__(self):
"""
Initialize the ModelHandler instance.
"""
self.error = None
self._context = None
self._batch_size = 0
self.initialized = False
self.predictor = None
self.model_file = "model.pth"
self.config_file = "config.yaml"
self.device = "cpu"
if torch.cuda.is_available():
self.device = "cuda"
logger.info("Using GPU for inference.")
else:
logger.info("Using CPU for inference.")

def initialize(self, context):
"""
Load the model and initialize the predictor.
Args:
context (Context): Initial context contains model server system properties.
"""
logger.info("Initializing model...")

self._context = context
self._batch_size = context.system_properties.get("batch_size", 1)
model_dir = context.system_properties.get("model_dir")
model_path = path.join(model_dir, self.model_file)
config_path = path.join(model_dir, self.config_file)
logger.debug(f"Checking model file: {model_path} exists: {path.exists(model_path)}")
logger.debug(f"Checking config file: {config_path} exists: {path.exists(config_path)}")
if not path.exists(model_path):
error_msg = f"Model file {model_path} does not exist."
logger.error(error_msg)
self.error = error_msg
self.initialized = False
return
if not path.exists(config_path):
error_msg = f"Config file {config_path} does not exist."
logger.error(error_msg)
self.error = error_msg
self.initialized = False
return
try:
cfg = get_cfg()
cfg.merge_from_file(config_path)
cfg.MODEL.WEIGHTS = model_path
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5
cfg.MODEL.DEVICE = self.device
self.predictor = DefaultPredictor(cfg)
logger.info("Predictor initialized successfully.")
if self.predictor is None:
raise RuntimeError("Predictor initialization failed, the predictor is None.")
self.initialized = True
logger.info("Model initialization complete.")
except Exception as e:
error_msg = "Error during model initialization"
logger.exception(error_msg)
self.error = str(e)
self.initialized = False

def preprocess(self, batch):
"""
Transform raw input into model input data.

Args:
batch (List[Dict]): List of raw requests, should match batch size.

Returns:
List[np.ndarray]: List of preprocessed images.
"""
logger.info(f"Pre-processing started for a batch of {len(batch)}.")

images = []
for idx, request in enumerate(batch):
request_body = request.get("body")
if request_body is None:
error_msg = f"Request {idx} does not contain 'body'."
logger.error(error_msg)
raise ValueError(error_msg)
try:
image_stream = io.BytesIO(request_body)
try:
pil_image = Image.open(image_stream)
pil_image = pil_image.convert("RGB")
img = np.array(pil_image)
img = img[:, :, ::-1]
except UnidentifiedImageError as e:
error_msg = f"Failed to identify image for request {idx}. Error: {e}"
logger.error(error_msg)
raise ValueError(error_msg)
except Exception as e:
error_msg = f"Failed to decode image for request {idx}. Error: {e}"
logger.error(error_msg)
raise ValueError(error_msg)
images.append(img)
except Exception as e:
logger.exception(f"Error preprocessing request {idx}")
raise e
logger.info(f"Pre-processing finished for a batch of {len(batch)}.")
return images

def inference(self, model_input):
"""
Perform inference on the model input.

Args:
model_input (List[np.ndarray]): List of preprocessed images.

Returns:
List[Dict]: List of inference outputs.
"""
logger.info(f"Inference started for a batch of {len(model_input)}.")

outputs = []
for idx, image in enumerate(model_input):
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can detectron2 process a batch of images? Can we send the batch instead of looping over each image

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes, Detectron2 can process a batch of images, and we can send them.

try:
logger.debug(f"Processing image {idx}: shape={image.shape}, dtype={image.dtype}")
output = self.predictor(image)
outputs.append(output)
except Exception as e:
logger.exception(f"Error during inference on image {idx}")
raise e
logger.info(f"Inference finished for a batch of {len(model_input)}.")
return outputs

def postprocess(self, inference_outputs):
"""
Post-process the inference outputs to a serializable format.

Args:
inference_outputs (List[Dict]): List of inference outputs.

Returns:
List[str]: List of JSON strings containing predictions.
"""
start_time = time.time()
logger.info(f"Post-processing started at {start_time} for a batch of {len(inference_outputs)}.")
responses = []
for idx, output in enumerate(inference_outputs):
try:
predictions = output["instances"].to("cpu")
logger.debug(f"Available prediction fields: {predictions.get_fields().keys()}")
response = {}
if predictions.has("pred_classes"):
classes = predictions.pred_classes.numpy().tolist()
response["classes"] = classes
if predictions.has("pred_boxes"):
boxes = predictions.pred_boxes.tensor.numpy().tolist()
response["boxes"] = boxes
if predictions.has("scores"):
scores = predictions.scores.numpy().tolist()
response["scores"] = scores
if predictions.has("pred_masks"):
response["masks_present"] = True
responses.append(json.dumps(response))
except Exception as e:
logger.exception(f"Error during post-processing of output {idx}")
raise e
elapsed_time = time.time() - start_time
logger.info(f"Post-processing finished for a batch of {len(inference_outputs)} in {elapsed_time:.2f} seconds.")

return responses

def handle(self, data, context):
"""
Entry point for TorchServe to interact with the ModelHandler.

Args:
data (List[Dict]): Input data.
context (Context): Model server context.

Returns:
List[str]: List of predictions.
"""
logger.info("Handling request...")
start_time = time.time()
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We already have a utility to measure the time, please check this handler

if not self.initialized:
self.initialize(context)
if not self.initialized:
error_message = f"Model failed to initialize: {self.error}"
logger.error(error_message)
return [error_message]

if data is None:
error_message = "No data received for inference."
logger.error(error_message)
return [error_message]

try:
preprocess_start = time.time()
model_input = self.preprocess(data)
preprocess_time = time.time() - preprocess_start

inference_start = time.time()
model_output = self.inference(model_input)
inference_time = time.time() - inference_start

postprocess_start = time.time()
output = self.postprocess(model_output)
postprocess_time = time.time() - postprocess_start

total_time = time.time() - start_time
logger.info(
f"Handling request finished in {total_time:.2f} seconds. "
f"(Preprocess: {preprocess_time:.2f}s, "
f"Inference: {inference_time:.2f}s, "
f"Postprocess: {postprocess_time:.2f}s)"
)
return output
except Exception as e:
error_message = f"Error in handling request: {str(e)}"
logger.exception(error_message)
return [error_message]
########################################################################################################################################
_service = ModelHandler()

def handle(data, context):
"""
Entry point for TorchServe to interact with the ModelHandler.

Args:
data (List[Dict]): Input data.
context (Context): Model server context.

Returns:
List[str]: List of predictions.
"""
return _service.handle(data, context)
########################################################################################################################################
14 changes: 14 additions & 0 deletions examples/object_detector/detectron2/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
opencv-python==4.10.0.84
python-multipart==0.0.9
torch==2.2.0
torchvision==0.17.0
transformers==4.44.2
torchvision==0.17.0
numpy==1.24.4
torchserve==0.12.0
torch-model-archiver==0.12.0
torch-workflow-archiver==0.2.15
pillow==11.0.0
pillow-avif-plugin==1.4.6
pillow-jxl-plugin==1.2.8
pillow_heif==0.20.0